WaveNowXV Electrochemical Workstation

Part Number
AFTP3

The WaveNowXV electrochemical workstation is a capable, yet cost-effective, potentiostat and galvanostat system.  For routine electrochemical measurements like cyclic voltammetry, chronoamperometry, square wave voltammetry, and many more DC techniques, the WaveNowXV is a great option for those looking for a small, simple, portable, and reliable electrochemical workstation.  So small as to easily pass through a glovebox antechamber, low cost for educational electrochemistry, yet just as capable as any other basic potentiostat on the market.  Customers often use this system for routine electrochemistry where impedance (EIS) is not required, which is how we are able to offer it for such a low price.

Only Available in Bundles

This product can only be purchased in bundles. View these related bundles in the tab below.

Login to View Prices

Customers must be logged into their account to view prices. Not all regions provide pricing online. If you do not see prices, you can obtain them from the designated sales channel in your region.

The WaveNowXV electrochemical workstation is a capable, yet cost-effective, potentiostat and galvanostat system.  For routine electrochemical measurements like cyclic voltammetry, chronoamperometry, square wave voltammetry, and many more DC techniques, the WaveNowXV is a great option for those looking for a small, simple, portable, and reliable electrochemical workstation.  So small as to easily pass through a glovebox antechamber, low cost for educational electrochemistry, yet just as capable as any other basic potentiostat on the market.  Customers often use this system for routine electrochemistry where impedance (EIS) is not required, which is how we are able to offer it for such a low price.

The WaveNowXV Electrochemical Workstation is available as part of a product bundle. A product bundle is a combination of products that are compatible and often sold together for convenience and confidence. Below is a list of product bundles that contain WaveNowXV Electrochemical Workstation.
Basic System Bundle (No Additional Products Included)
Image
Bundle Name
Bundle Part #
WaveNow XV System Bundle
[WNXV-BASIC]
Bundled with MSR evo Electrode Rotator and RDE Electrode
Image
Bundle Name
Bundle Part #
MSR evo Electrode Rotator with WaveNow XV Electrochemical Workstation
Complete RDE System Bundle: WaveNow XV, MSR evo, E5 Series RDE
[WNXV-MSR-RDE-E5]
MSR evo Electrode Rotator with WaveNow XV Electrochemical Workstation
Complete RDE System Bundle: WaveNow XV, MSR evo, E5TQ Series RDE
[WNXV-MSR-RDE-E5TQ]
Bundled with WaveVortex 10 Electrode Rotator and RDE Electrode
Image
Bundle Name
Bundle Part #
WaveVortex 10 Electrode Rotator with WaveNow XV Electrochemical Workstation
Complete RDE System Bundle: WaveNow XV, WaveVortex 10, E5 Series RDE
[WNXV-WV10-RDE-E5]
WaveVortex 10 Electrode Rotator with WaveNow XV Electrochemical Workstation
Complete RDE System Bundle: WaveNow XV, WaveVortex 10, E5TQ Series RDE
[WNXV-WV10-RDE-E5TQ]
Bundled with Honeycomb Cell and UV/Vis Instrumentation
Image
Bundle Name
Bundle Part #
WaveNowXV Spectroelectrochemistry System Bundle
[WNXV-SPEC]
Electrochemical Workstations
Electrode Connections
Reference electrode
Sense line with driven shield
Counter electrode
Drive line with grounded shield
Working electrode channels
Working electrode #1 (WK1)
Separate sense and drive lines, each with driven shield (current measurement via passive shunt)
Working electrode #2 (WK2)
N/A
Ground Connections
DC common (signal)
The DC Common is accessible via the black banana plug on the cell cable and the center pin on the Rotator Control Port
Chassis terminal
The metal case (chassis) is connected to the shield on the Cell Port and the shield on the USB Port.
Earth
No direct connection to earth ground is provided.
Measured Current (Potentiostatic Mode)
Current ranges (measured)
±100 mA, ±5 mA, ±200 µA, ±10 µA
Current resolution at each range (measured)
3.4 µA, 170 nA, 6.8 nA, 340 pA
Autoranging
Yes
Practical current range
1 nA to 100 mA
DC accuracy (current, measured)
±0.2% of setting; ±0.05% of range
DC leakage current
<10 pA at 25°C
AC accuracy (measured)
N/A
AC leakage current
N/A
ADC input
16 bits
Filters (for DC Experiments)
2.5 kHz
Applied Current (Galvanostatic Mode)
Current ranges (applied)
±5 mA, ±200 µA, ±10 µA, ±100 mA
Current resolution at each range (applied)
313 pA, 3.1 µA, 156 nA, 6.25 nA
DC accuracy (current, applied)
±0.2% of setting; ±0.05% of range
DAC output (current)
16 bits
Power Amplifier (Counter Electrode Amplifier)
Output current
±100 mA (maximum)
Short circuit current limit
undetermined
Compliance voltage
±12 V
Bandwidth
>20 kHz (on fastest speed setting)
Noise and ripple
undetermined
Slew rate/rise time
180 V/ms (on fastest speed setting)
Electrometer (Reference Electrode Amplifier)
Input impedance
>10¹⁴ in parallel with <10 pF
Input current
<2 pA leakage/bias current at 25°C
CMRR
> 50 dB at 10 kHz, 80 dB at 60 Hz
Electrometer bandwidth
> 800 kHz (3 dB)
Measured Potential
Potential ranges (measured)
±10 V
Potential resolution at each range (measured)
340 µV per ADC bit
DC accuracy (potential, measured)
±0.2% of setting; ±0.05% of range
ADC output
16 bits
Filters (for DC Experiments)
2.5 kHz
Applied Potential (Potentiostatic Mode)
Potential ranges (applied)
±10 V
Potential resolution at each range (applied)
313 µV per DAC bit
DC accuracy (potential, applied)
±0.2% of setting; ±0.05% of range
DAC output (potential)
16 bits
CV sweep rate (minimum)
25 µV/s
CV sweep rate (maximum)
10 V/s
Data Acquisition (for DC Experiments)
Clock resolution
500 ns (minimum time base)
Point interval
500 µs (minimum)
Synchronization
Simultaneous current and potential input
Raw point total
<10 million per experiment
Electrochemical Impedance Spectroscopy (EIS)
EIS capable
EIS frequency range
N/A
EIS frequency resolution
N/A
EIS frequency stability
N/A
Modes
N/A
Voltage excitation setpoint
N/A
Current excitation setpoint
N/A
Frequency sweeping
N/A
EIS accuracy
N/A
Rotator Control Connections
Rotator connector A
N/A
Rotator connector B
4-pin connector includes chassis ground, rotator enable output signal (+15 V tolerant), analog signal ground (DC Common), and analog rotation rate control output signal
Rate control signal
±10 V
Digital enable signal
Open drain with 4.7 kΩ pull up to +4 V (TTL compatible), open drain (TTL compatible)
Accessories
Dummy cell
External dummy cell included
Cell cable
HD-15 male connector to multiple banana plugs via shielded coaxial cables (included)
Auxiliary Connections
Connector C
N/A
Trigger input
N/A
Trigger output
N/A
Potential (E1) output
N/A
Current (I1) output
N/A
Potential (E2) output
N/A
Current (I2) output
N/A
Auxiliary analog input
N/A
Auxiliary analog output
N/A
WK1 input
N/A
WK2 input
N/A
General
Power input
5.0 VDC, 2 A (low voltage DC device)
Power supply input
100 to 240 VAC, 300 mA, 50 to 60 Hz
Power supply output
5 VDC, 2.0 A Power supply (included) has a C14 type input connector
Power cord
Various international cables sold separately (C13 type)
LED indicators
Power, USB, and status
Instrument dimensions
165 × 100 × 29 mm (6.5 × 3.9 × 1.1 in)
Workstation shipping dimensions
260 × 260 × 360 mm (10.2 × 10.2 × 14.2 in.)
Instrument weight
280 g (10 oz.)
Workstation shipping weight
1.4 kg (3 lb)
Temperature range
10°C - 40°C
Humidity range
80% RH maximum, non-condensing
Workstation modes
Potentiostat (POT), Galvanostat (GAL), Open-Circuit Potential (OCP), Zero-Resistance Ammeter (ZRA)
Communication
Interface
Wireless capable
  1. Gupta, P.; Moore, C.E.; Turro, C. Photo- and Electrocatalytic Hydrogen Evolution by Heteroleptic Dirhodium(II,II) Complexes: Role of the Bridging and Diimine Ligands. J. Am. Chem. Soc. 2024, 146, 27161-27172.
  2. Esquivel-Castro, T.A.; Ceballos, J.; Torres-Zanoni, E.; Padmasree, K.P.; Valadez-Renteria, E.; Aldana-Sanchez, I.; Quevedo-Lopez, M.; Rodriguez-Gonzalez, V.; Oliva, J. Solar photocatalytic degradation of methylene blue dye and 4-CP herbicide by using a biodegradable fiber support decorated with Ce0.9Bi0.1O2 porous nanoparticles. Inorganic Chemistry Communications 2024, 168, 112946.
  3. Hossain, M. Oxidovanadium(V) complexes with tridentate hydrazone ligands as oxygen atom transfer catalysts. Polyhedron 2024, 258, 117020.
  4. Cole, H.D.; Vali, A.; Roque, J.A.I.; Shi, G.; Talgatov, A.; Kaur, G.; Francés-Monerris, A.; Alberto, M.E.; Cameron, C.G.; McFarland, S.A. Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties. Inorg. Chem. 2024, 63, 9735-9752.
  5. Eisnor, M.; Biton, M.; Granados, P.; Reader, H.; Brosseau, C. Coupling Multidimensional Chromatography with Plasmonic Sensing: An Exploration of Electrochemical SERS as a Detection Modality for 2D-LC. Can. J. Chem. 2024.
  6. Jayworth, J.A.; Decavoli, C.; Capobianco, M.D.; Menzel, J.P.; Adler, S.R.; Kocoj, C.A.; Freeze, J.G.; Crabtree, R.H.; Guo, P.; Batista, V.S.; Brudvig, G.W. BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications. ACS Appl. Mater. Interfaces 2024, 16, 14841-14851.
  7. Durbin, M.M.; Balzer, A.H.; Reynolds, J.R.; Ratcliff, E.L.; Stingelin, N.; Österholm, A.M. Role of Side-Chain Free Volume on the Electrochemical Behavior of Poly(propylenedioxythiophenes). Chem. Mater. 2024, 36, 2634-2641.
  8. De Keersmaecker, M.; Garrett, B.S.; Shen, D.E.; Jones, A.L.; Österholm, A.M.; Mirotznik, M.; Reynolds, J.R. Conducting Polymer Switches Permit the Development of a Frequency-Reconfigurable Antenna. ACS Appl. Electron. Mater. 2023, 5, 1697-1706.
  9. Carter, C.; Kratish, Y.; Marks, T.J. Influence of Rare-Earth Ion Radius on Metal–Metal Charge Transfer in Trinuclear Mixed-Valent Complexes. Inorg. Chem. 2023, 62, 4799-4813.
  10. Wang, Y.; Zhang, Z.; Abergel, R.J. Hydroxypyridinone-based stabilization of Np(IV) enabling efficient U/Np/Pu separations in the Adapted PUREX process. Separation and Purification Technology 2021, 259, 118178.
  11. Lin, L.; Xu, N.; Wu, C.; Huang, J.; Nattestad, A.; Zheng, X.; Wallace, G.G.; Zhang, S.; Chen, J. Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. Matter 2021, 4, 955-968.
  12. Goes, S.L.; Mayer, M.N.; Nutting, J.E.; Hoober-Burkhardt, L.E.; Stahl, S.S.; Rafiee, M. Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. J. Chem. Educ. 2021, 98, 600-606.
  13. Chaudhary, M.; Singh, M.; Kumar, A.; , .; Gautam, Y.K.; Malik, A.K.; Kumar, Y.; Singh, B.P. Experimental investigation of Co and Fe-Doped CuO nanostructured electrode material for remarkable electrochemical performance. Ceramics International 2021, 47, 2094-2106.
  14. Garcia, C.R.; Oliva, J.; Chávez, D.; Esquivel, B.; Gómez-Solís, C.; Martínez-Sánchez, E.; Mtz-Enriquez, A.I. Effect of Bismuth Dopant on the Photocatalytic Properties of SrTiO3 Under Solar Irradiation. Top Catal 2021, 64, 155-166.
  15. Chavez, D.; Gomez-Solis, C.; Mtz-Enriquez, A.I.; Rodriguez-Gonzalez, V.; Escobar-Barrios, V.; Garcia, C.R.; Oliva, J. High sensitivity of flexible graphene composites decorated with V2O5 microbelts for NO2 detection. Materials Research Bulletin 2021, 133, 111052.
  16. Saladin, M.; Maroncelli, M. Electron Transfer Kinetics between an Electron-Accepting Ionic Liquid and Coumarin Dyes. J. Phys. Chem. B 2020, 124, 11431-11445.
  17. Liu, M.; Lai, C.; Zhang, M.; Radu, D.R. Cascade synthesis and optoelectronic applications of intermediate bandgap Cu3VSe4 nanosheets. Sci. Rep. 2020, 10, 21679.
  18. Perez-Gonzalez, R.; Peng, Z.; Camacho, D.; Oliva, A.I.; Pei, Q.; Zakhidov, A.; Encinas, A.; Oliva, J. All solid state stretchable carbon nanotube based supercapacitors with controllable output voltage. Journal of Energy Storage 2020, 32, 101844.
  19. Lopez-Medina, M.; Hernandez-Navarro, F.; Mtz-Enriquez, A.I.; Oliva, A.I.; Rodriguez-Gonzalez, V.; Camarillo-Garcia, J.P.; Aguilar-Ortiz, C.O.; Flores-Zuñiga, H.; Oliva, J. Enhancing the capacity and discharge times of flexible graphene batteries by decorating their anodes with magnetic alloys NiMnMx (Mx=Ga, In, Sn). Materials Chemistry and Physics 2020, 256, 123660.
  20. Treviño, R.E.; Slater, J.W.; Shafaat, H.S. Robust Carbon-Based Electrodes for Hydrogen Evolution through Site-Selective Covalent Attachment of an Artificial Metalloenzyme. ACS Appl. Energy Mater. 2020, 3, 11099-11112.
  21. Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.; Huang, Y.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; Zhou, B.; Ma, J.; Wang, S. Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. Chem 2020, 6, 2974-2993.
  22. Homayounfar, S.Z.; Rostaminia, S.; Kiaghadi, A.; Chen, X.; Alexander, E.T.; Ganesan, D.; Andrew, T.L. Multimodal Smart Eyewear for Longitudinal Eye Movement Tracking. Matter 2020, 3, 1275-1293.
  23. Wang, L.; Lin, Y.; DeCarlo, S.; Wang, Y.; Leung, K.; Qi, Y.; Xu, K.; Wang, C.; Eichhorn, B.W. Compositions and Formation Mechanisms of Solid-Electrolyte-Interphase (SEI) on Microporous Carbon/Sulfur Cathodes. Chem. Mater. 2020.
  24. Wijesinghe, M.S.; Batchelder, K.; Wickramasinghe, D.; Oh, J.; Chow, K. Battery-powered distance-based electrochemical sensor using a longitudinally-oriented silver band electrode. Sensors and Actuators B: Chemical 2020, 308, 127684.
  25. Nguyen, K.T.; Lane, E.E.; McMillen, C.D.; Pienkos, J.A.; Wagenknecht, P.S. Is Indenyl a Stronger or Weaker Electron Donor Ligand than Cyclopentadienyl? Opposing Effects of Indenyl Electron Density and Ring Slipping on Electrochemical Potentials. Organometallics 2020, 39, 670-678.
  26. Madrigal, E.A.; Taylor, J.K.; Raghu, G.; West, R.M. Cross-linking of DNA monolayers by cisplatin examined using electrostatic denaturation. Journal of Electroanalytical Chemistry 2020, 860, 113762.
  27. Jenks, T.C.; Kuda-Wedagedara, A.N.W.; Bailey, M.D.; Ward, C.L.; Allen, M.J. Spectroscopic and Electrochemical Trends in Divalent Lanthanides through Modulation of Coordination Environment. Inorg. Chem. 2020, 59, 2613-2620.
  28. Mtz-Enriquez, A.I.; Padmasree, K.P.; Oliva, A.I.; Gomez-Solis, C.; Coutino-Gonzalez, E.; Garcia, C.R.; Esparza, D.; Oliva, J. Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microparticles. Sensors and Actuators B: Chemical 2020, 305, 127466.
  29. Pallares, R.M.; Carter, K.P.; Zeltmann, S.E.; Tratnjek, T.; Minor, A.M.; Abergel, R.J. Selective Lanthanide Sensing with Gold Nanoparticles and Hydroxypyridinone Chelators. Inorg. Chem. 2020, 59, 2030-2036.
  30. Carpenter, J.M.; Zhong, F.; Ragusa, M.J.; Louro, R.O.; Hogan, D.A.; Pletneva, E.V. Structure and redox properties of the diheme electron carrier cytochrome c4 from Pseudomonas aeruginosa. Journal of Inorganic Biochemistry 2020, 203, 110889.
  31. McLoughlin, E.A.; Matson, B.D.; Sarangi, R.; Waymouth, R.M. Electrocatalytic Alcohol Oxidation with Iron-Based Acceptorless Alcohol Dehydrogenation Catalyst. Inorg. Chem. 2020, 59, 1453-1460.
  32. Wang, H.; Tampio, A.J.F.; Xu, Y.; Nicholas, B.D.; Ren, D. Noninvasive Control of Bacterial Biofilms by Wireless Electrostimulation. ACS Biomater. Sci. Eng. 2020, 6, 727-738.
  33. Hughes, M.A.; Allen, J.A.; Donne, S.W. Optimized Electrolytic Carbon and Electrolyte Systems for Electrochemical Capacitors. ChemElectroChem 2020, 7, 266-282.
  34. Liu, S.; Leng, J.; Aquino, T.C. Development of Disposable Single-Use Biosensor for Fructosyl Valine and Glycated Hemoglobin A1c. 2019, 09, 45.
  35. Müller, A.V.; de Oliveira, K.T.; Meyer, G.J.; Polo, A.S. Inhibiting Charge Recombination in cis-Ru(NCS)2 Diimine Sensitizers with Aromatic Substituents. ACS Appl. Mater. Interfaces 2019, 11, 43223-43234.
  36. Acharya, P.; Nelson, Z.J.; Benamara, M.; Manso, R.H.; Bakovic, S.I.P.; Abolhassani, M.; Lee, S.; Reinhart, B.; Chen, J.; Greenlee, L.F. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4, 17209-17222.
  37. Kim, J.; Thomas, C.A.; Ewald, J.M.; Kurien, N.M.; Booker, M.E.; Greve, H.J.; Albu, T.V. Studies on lysozyme modifications induced by substituted p-benzoquinones. Bioorganic Chemistry 2019, 85, 386-398.
  38. Shao, J.; Johnson, A.; Hansen, C.A.; Kadish, K.M.; Han, B. Electroreductive dechlorination of γ-Hexachlorocyclohexane catalyzed by Rh2(dpf)4 in nonaqueous media, where dpf=N,N′-Diphenylformamidinate (1-) ion. Journal of Electroanalytical Chemistry 2019, 837, 208-218.
  39. Rahaman, A.; Ghosh, S.; Basak-Modi, S.; Abdel-Magied, A.F.; Kabir, S.E.; Haukka, M.; Richmond, M.G.; Lisensky, G.C.; Nordlander, E.; Hogarth, G. Chalcogenide-capped triiron clusters [Fe3(CO)9(μ3-E)2], [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) as proton-reduction catalysts. Journal of Organometallic Chemistry 2019, 880, 213-222.
  40. King, A.P.; Gellineau, H.A.; MacMillan, S.N.; Wilson, J.J. Physical properties, ligand substitution reactions, and biological activity of Co(III)-Schiff base complexes. Dalton Trans. 2019.
  41. Ho, D. Detection and Melting of Surface-Bound DNA using a Purely Electrochemical Approach. Master's Thesis, University of San Francisco, 2018.
  42. Bindesri, S.D.; Alhatab, D.S.; Brosseau, C.L. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst 2018, 143, 4128-4135.
  43. Zhao, L.; Blackburn, J.; Brosseau, C.L. Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Anal. Chem. 2015, 87, 441-447.
  44. Harroun, S.G.; Abraham, T.J.; Prudhoe, C.; Zhang, Y.; Scammells, P.J.; Brosseau, C.L.; Pye, C.C.; Singer, R.D. Electrochemical surface-enhanced Raman spectroscopy (E-SERS) of novel biodegradable ionic liquids. Phys. Chem. Chem. Phys. 2013, 15, 19205-19212.
  45. Brown-Xu, S.E.; Chisholm, M.H.; Durr, C.B.; Spilker, T.F.; Young, P.J. Modulating the M2δ-to-ligand charge transfer transition by the use of diarylboron substituents. Dalton Trans. 2013, 42, 14491-14497.
  46. Budiyanto, E.; Ochoa-Hernández, C.; Tüysüz, H. Impact of Highly Concentrated Alkaline Treatment on Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. , 7, 2200499.
  47. Cicoira, F.; Wang, M.; Fan, J.; Calame, M.B.; Kim, C.; Chiang, C.; Segura, A.F.C.; Vurro, V.; Bargigia, I.; Mauzeroll, J. The “ins and outs” of electropolymerized PEDOT organic electrochemical transistors. .
  48. Piechota, E. Fundamental insights into electron transfer reactions of cyclometalated ruthenium donor-bridge-acceptor compounds. Ph.D. Dissertation, University of North Carolina at Chapel Hill, .
  49. Roth, H. INVESTIGATIONS TOWARD THE APPLICATION OF ORGANIC PHOTOREDOX CATALYSIS TO THE SYNTHESIS OF NATURAL PRODUCTS. Ph.D. Dissertation, University of North Carolina at Chapel Hill, .
  50. Brady, M. Fundamental Insights into Dye-Sensitized Interfaces for Solar Fuels Production. Ph.D. Dissertation, University of North Carolina at Chapel Hill, .
  51. McGuire, A. When a Hemoglobin Acts as a Catalytic Enzyme: Mechanistic Studies of Dehaloperoxidase. Ph.D. Dissertation, North Carolina State University, .
  52. Fleischmann, S.; Sun, Y.; Osti, N.C.; Wang, R.; Mamontov, E.; Jiang, D.; Augustyn, V. Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. J. Mater. Chem. A , 8, 412-421.
  53. McLeod, K.E.R.; Lynk, T.P.; Sit, C.S.; Brosseau, C.L. On the origin of electrochemical surface-enhanced Raman spectroscopy (EC-SERS) signals for bacterial samples: the importance of filtered control studies in the development of new bacterial screening platforms - Analytical Methods (RSC Publishing). , 11, 924-929.
  54. Niepa, T.H.R.; Gilbert, J.L.; Ren, D. Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials , 33, 7356–7365.
  55. Pazdzior, R.; Yang, Z.(.; Mesbahuddin, M.S.; Yee, J.; van der Est, A.; Rafferty, S. Low reduction potential cytochrome b5 isotypes of Giardia intestinalis. Exp. Parasitol. , 157, 197-201.
  56. McDarmont, S.L.; McMillen, C.D.; Temelso, B.; Pienkos, J.A. Exploiting a C–F Activation Strategy to Generate Novel Tris(pyrazolyl)methane Ligands. , 646, 1886-1891.
  57. Wang, R.; Sun, Y.; Brady, A.; Fleischmann, S.; Eldred, T.B.; Gao, W.; Wang, H.; Jiang, D.; Augustyn, V. Fast Proton Insertion in Layered H2W2O7 via Selective Etching of an Aurivillius Phase. Adv. Energy Mater. , 11, 2003335.
  58. Jenks, T.C. The Effects of Coordination Environment on the Spectroscopic and Electrochemical Properties of Divalent Lanthanides. Ph.D. Dissertation, Wayne State University, .
  59. A. Hughes, M.; D. Bennett, R.; A. Allen, J.; W. Donne, S. Physical characteristics of capacitive carbons derived from the electrolytic reduction of alkali metal carbonate molten salts. RSC Adv. , 9, 36771-36787.
  60. Oh, S.; Park, H.; Kim, H.; Park, Y.S.; Ha, M.G.; Jang, J.H.; Kim, S. Fabrication of Large Area Ag Gas Diffusion Electrode via Electrodeposition for Electrochemical CO2 Reduction. Coatings , 10, 341.
  61. Neshani, S.; Nyamekye, C.K.A.; Melvin, S.; Smith, E.A.; Chen, D.J.; Neihart, N.M. AC and DC Differential Bridge Structure Suitable for Electrochemical Interfacial Capacitance Biosensing Applications. Biosensors , 10, 28.
  62. Dupont, M.F.; Gibson, A.J.; Elbourne, A.; Forghani, M.; Cross, A.D.; Donne, S.W. In Situ Investigation of the Electrodeposition Mechanism of Manganese Dioxide from a Citrate Electrolyte: The Effect of Intermediate Stabilization on Material Morphology. J. Electrochem. Soc. , 167, 040520.
  63. Balaraman, L.; Emhoff, K.A.; Salem, A.M.; Hanna, J.; Alsabony, M.N.; Bayachou, M.; Mundell, J.J.; Christopher Boyd, W. Electrochemical studies of cobalt(II) diphenylazodioxide complexes. Inorganica Chimica Acta , 501, 119277.
  64. Ouellette, M.; Mathault, J.; Niyonambaza, S.D.; Miled, A.; Boisselier, E. Electrochemical Detection of Dopamine Based on Functionalized Electrodes. Coatings , 9, 496.
  65. Kellett, C.W.; Swords, W.B.; Turlington, M.D.; Meyer, G.J.; Berlinguette, C.P. Resolving orbital pathways for intermolecular electron transfer. Nat. Commun. , 9, 4916.
  66. Mughal, M.A.; Alqudsi, A.; Rao, P.M.; Masroor, M.; Ichwani, R.; Zhou, L.; Giri, B. All-electrodeposited p-Cu2ZnSnS4/n-In2S3 Heterojunction Formation for Solar Cell Applications. , 142–147.
  67. Brown, T.A.; Chen, H.; Zare, R.N. Detection of the Short-Lived Radical Cation Intermediate in the Electrooxidation of N,N -Dimethylaniline by Mass Spectrometry. , 127, 11335–11337.
  68. Singh, P.; Saltsman, I.; Mahammed, A.; Goldberg, I.; Tumanskii, B.; Gross, Z. Iron complexes of tris(4-nitrophenyl)corrole, with emphasis on the (nitrosyl)iron complex. J. Porphyrins Phthalocyanines , 16, 663–673.
  69. Mahammed, A.; Tumanskii, B.; Gross, Z. Effect of bromination on the electrochemistry, frontier orbitals, and spectroscopy of metallocorroles. J. Porphyrins Phthalocyanines , 15, 1275–1286.
  70. Baker, D.; Davis, S.; Budner, D. Electrochemical Detection of Glucose Using a Prussian Blue Modified Electrodes Combined with Glucose Oxidase Encapsulated within a Xerogel. Journal of the South Carolina Academy of Science , 22, 6-9.
Document #
Title
Type
Download
DRU10007
WaveNowXV Electrochemical Workstation User Guide
Login
Register
Lost Password

Please enter your username (email address) and password below.

Confirm Logout

Are you sure you want to log out?

Request a Quote for this Cart

Below is the billing data we have on file. These details will be used on your quotation, so please update them here if you require any changes. Changing any details here updates them for your account.