WaveDriver 20 DC Bipotentiostat

Part Number
AFP2
Product Discontinued - Replacement Available

This product has been discontinued and can no longer be purchased. The product remains on our website for reference and a listing of its specifications. We suggest purchasing the replacement product, WaveNow Wireless Electrochemical Workstation.

The WaveDriver® 20 is a benchtop USB Bipotentiostat/Galvanostat System capable of performing a wide range of electroanalytical techniques. The WaveDriver is a cost-effective, yet powerful and versatile, benchtop instrument capable of performing a wide range of electroanalytical techniques. With a modest form factor and convenient USB interface, the WaveDriver 20 packs a punch with iR compensation, ability to form over 38 different electrochemical techniques, and controlled through AfterMath® Data Organizer software. The WaveDriver 20 is a true bipotentiostat, which means two working electrode channels to a common counter and reference electrode, ideal for experiments such as rotating ring-disk analysis.

Login to View Prices

Customers must be logged into their account to view prices. Not all regions provide pricing online. If you do not see prices, you can obtain them from the designated sales channel in your region.

The WaveDriver® 20 is a benchtop USB Bipotentiostat/Galvanostat System capable of performing a wide range of electroanalytical techniques. The WaveDriver is a cost-effective, yet powerful and versatile, benchtop instrument capable of performing a wide range of electroanalytical techniques. With a modest form factor and convenient USB interface, the WaveDriver 20 packs a punch with iR compensation, ability to form over 38 different electrochemical techniques, and controlled through AfterMath® Data Organizer software. The WaveDriver 20 is a true bipotentiostat, which means two working electrode channels to a common counter and reference electrode, ideal for experiments such as rotating ring-disk analysis.

Electrochemical Workstations
Electrode Connections
Reference electrode
Sense line with driven shield
Counter electrode
Drive line with grounded shield
Working electrode channels
Working electrode #1 (WK1)
Separate sense and drive lines, each with driven shield (current measurement via passive shunt)
Working electrode #2 (WK2)
Separate sense and drive lines, each with driven shield (current measurement via passive shunt)
Ground Connections
DC common (signal)
The DC Common is isolated from the USB port, the instrument chassis and earth ground. The DC Common is accessible via a banana binding post (black) on the back panel.
Chassis terminal
The metal case (chassis) terminal is a banana binding post (back panel) which may optionally be used to connect the chassis to earth ground or signal ground to improve noise screening (shielding).
Earth
No direct connection to earth ground is provided.
Measured Current (Potentiostatic Mode)
Current ranges (measured)
±1 A, ±100 mA, ±10 mA, ±1 mA, ±100 µA, ±10 µA, ±1 µA, ±100 nA
Current resolution at each range (measured)
31.3 µA, 3.13 µA, 313 nA, 31.3 nA, 3.13 nA, 313 pA, 31.3 pA, 3.13 pA
Autoranging
Yes
Practical current range
100 pA to 1 A
DC accuracy (current, measured)
±0.2% of setting; ±0.05% of range
DC leakage current
<10 pA at 25°C
AC accuracy (measured)
N/A
AC leakage current
N/A
ADC input
16 bits
Filters (for DC Experiments)
10 Hz, 30 Hz, 100 Hz, 1 kHz, 10 kHz
Applied Current (Galvanostatic Mode)
Current ranges (applied)
±1 A, ±1 mA, ±100 µA, ±10 µA, ±1 µA, ±100 mA, ±10 mA, ±100 nA
Current resolution at each range (applied)
31.3 µA, 3.13 µA, 313 nA, 31.3 nA, 3.13 nA, 313 pA, 31.3 pA, 3.13 pA
DC accuracy (current, applied)
±0.2% of setting; ±0.05% of range
DAC output (current)
16 bits
Power Amplifier (Counter Electrode Amplifier)
Output current
±1 A (maximum)
Short circuit current limit
undetermined
Compliance voltage
±16.5 V
Bandwidth
>200 kHz (on fastest speed setting)
Noise and ripple
undetermined
Slew rate/rise time
10 V/µs (on fastest speed setting)
Electrometer (Reference Electrode Amplifier)
Input impedance
>10¹³ in parallel with <10 pF
Input current
<10 pA leakage/bias current at 25°C
CMRR
>100 dB, 0 - 1 kHz, >74 dB at 10 kHz
Electrometer bandwidth
>11 MHz (3 dB)
Measured Potential
Potential ranges (measured)
±15 V, ±10 V
Potential resolution at each range (measured)
469 µV per ADC bit, 313 µV per ADC bit
DC accuracy (potential, measured)
±0.2% of setting; ±0.05% of range
ADC output
16 bits
Filters (for DC Experiments)
10 Hz, 30 Hz, 100 Hz, 1 kHz, 10 kHz
Applied Potential (Potentiostatic Mode)
Potential ranges (applied)
±15 V, ±10 V
Potential resolution at each range (applied)
469 µV per DAC bit, 313 µV per DAC bit, 78 µV per DAC bit
DC accuracy (potential, applied)
±0.2% of setting; ±0.05% of range
DAC output (potential)
16 bits
CV sweep rate (minimum)
10 µV/s
CV sweep rate (maximum)
125 V/s
Data Acquisition (for DC Experiments)
Clock resolution
10 ns (minimum time base)
Point interval
80 µs (minimum)
Synchronization
Simultaneous current and potential input
Raw point total
<10 million per experiment
Electrochemical Impedance Spectroscopy (EIS)
EIS capable
EIS frequency range
N/A
EIS frequency resolution
N/A
EIS frequency stability
N/A
Modes
N/A
Voltage excitation setpoint
N/A
Current excitation setpoint
N/A
Frequency sweeping
N/A
EIS accuracy
N/A
Rotator Control Connections
Rotator connector A
7-pin mini circular DIN includes analog and digital signal grounds, digital rotator enable signal, auxiliary digital output signal, and analog rotation rate control signal
Rotator connector B
3-pin connector includes analog signal ground, digital rotator enable signal (+15 V max), and analog rotation rate control signal
Rate control signal
±10 V, ±2.5 V
Digital enable signal
open drain (TTL compatible)
Accessories
Dummy cell
External dummy cell included
Cell cable
Combination D-SUB connector to multiple banana plugs via shielded coaxial cables (included)
Auxiliary Connections
Connector C
9-pin DSUB connector includes digital signal ground, two digital output signals, and three digital input signals
Trigger input
BNC female, TTL compatible
Trigger output
BNC female, TTL compatible
Potential (E1) output
N/A
Current (I1) output
N/A
Potential (E2) output
N/A
Current (I2) output
N/A
Auxiliary analog input
N/A
Auxiliary analog output
BNC female, ±10 V bipolar output, 313 µV resolution, 0.2% accuracy (available when second working electrode not in use)
WK1 input
BNC female, ±10V differential input, 20 kΩ impedance, ±0.5% accuracy; allows external waveform to be summed directly to the working electrode excitation signal
WK2 input
BNC female, ±10V differential input, 20 kΩ impedance, ±0.5% accuracy; allows external waveform to be summed directly to the working electrode excitation signal
General
Power input
24.0 VDC (±5%), 4.0 A (low voltage DC device)
Power supply input
100 - 240 VAC, 1.4 - 0.7 A, 50 - 60 Hz
Power supply output
24 VDC, 5.0 A power supply (included) has a C14 type input connector
Power cord
Various international cables sold separately (C13 type)
LED indicators
Power, USB, and status
Instrument dimensions
160 × 324 × 255 mm (6.3 × 12.75 × 10.0 in)
Workstation shipping dimensions
254 × 356 × 457 mm (10 × 14 × 18 in)
Instrument weight
4.6 kg (10.2 lb)
Workstation shipping weight
7.7 kg (17 lb)
Temperature range
10°C - 40°C
Humidity range
80% RH maximum, non-condensing
Workstation modes
Potentiostat (POT), Galvanostat (GAL), Open-Circuit Potential (OCP), Zero-Resistance Ammeter (ZRA)
Communication
Interface
Wireless capable
  1. Rowell, J.L.; Joshi, A.; Tan, H.; Yoon, D.; Manassa, J.; Stangel, A.; Bundschu, C.; Jia, Y.; Abruña, H.D.; Hovden, R.; Muller, D.A.; Robinson, R.D. Strain in Core–Shell Spinel Nanocrystals Enhances ORR Activity. ACS Catal. 2025, 9738-9748.
  2. , .; , .; , .; , .; , .; , . Novel exceptionally durable asymmetric double-side electrochromic device architecture. 2024, 274, 112963.
  3. Göbel, M.; Ramuglia, A.R.; Zhartovska, E.; Budhija, V.; Ly, K.H.; Mroginski, M.A.; Schwalbe, M.; Weidinger, I.M. Protonation of Pendant Pyridine Substituents in an Iron Porphyrin Hangman Complex: Influence on Spectral Visibility and Electrocatalysis. J. Phys. Chem. C 2024.
  4. Jia, S.; Yu, H.; Na, J.; Liu, Z.; Lv, K.; Ren, Z.; Sun, S.; Shao, Z. Efficient Electrosynthesis of Hydrogen Peroxide Using Oxygen-Doped Porous Carbon Catalysts at Industrial Current Densities. ACS Appl. Mater. Interfaces 2024.
  5. López Romero, M.; Arco, E.; Magallón-Cacho, L.; Ramírez-Aparicio, J. Enhancing Intrinsic Electrocatalytic Activity of Pt/C Nanoparticles for Oxygen Reduction Reaction in Acidic Media by Microwave-Assisted Synthesis. Current Microwave Chemistry 2024, 11.
  6. Dongare, S.; Coskun, O.K.; Cagli, E.; Stanley, J.S.; Mir, A.Q.; Brower, R.S.; Velázquez, J.M.; Yang, J.Y.; Sacci, R.L.; Gurkan, B. Key Experimental Considerations When Evaluating Functional Ionic Liquids for Combined Capture and Electrochemical Conversion of CO2. Langmuir 2024.
  7. Guo, Y.; Wang, T.; Wu, D.; Tan, Y. One-step synthesis of in-situ N, S self-doped carbon nanosheets with hierarchical porous structure for high performance supercapacitor and oxygen reduction reaction electrocatalyst. Electrochimica Acta 2021, 366, 137404.
  8. Martínez-Loyola, J.C.; Siller-Ceniceros, A.A.; Sánchez-Castro, M.E.; Sánchez, M.; Torres-Lubián, J.R.; Escobar-Morales, B.; Ornelas, C.; Alonso-Lemus, I.L.; Rodríguez-Varela, F.J. High Performance Pt Nanocatalysts for the Oxidation of Methanol and Ethanol in Acid Media by Effect of Functionalizing Carbon Supports with Ru Organometallic Compounds. J. Electrochem. Soc. 2020, 167, 164502.
  9. Kolesnichenko, I.V.; Arnot, D.J.; Lim, M.B.; Yadav, G.G.; Nyce, M.; Huang, J.; Banerjee, S.; Lambert, T.N. Zincate-Blocking-Functionalized Polysulfone Separators for Secondary Zn–MnO2 Batteries. ACS Appl. Mater. Interfaces 2020, 12, 50406-50417.
  10. Tian, W.; Gao, Q.; VahidMohammadi, A.; Dang, J.; Li, Z.; Liang, X.; Hamedi, M.M.; Zhang, L. Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal 2020, 420, 127601.
  11. Alipour Moghadam Esfahani, R.; Easton, E.B. Exceptionally durable Pt/TOMS catalysts for fuel cells. Applied Catalysis B: Environmental 2020, 268, 118743.
  12. Ren, J.; Wang, Y.; Chen, L.; Gao, L.; Tian, W.; Yuan, Z. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal 2020, 389, 124408.
  13. Cardoso, E.S.F.; Fortunato, G.V.; Palm, I.; Kibena-Põldsepp, E.; Greco, A.S.; Júnior, J.L.R.; Kikas, A.; Merisalu, M.; Kisand, V.; Sammelselg, V.; Tammeveski, K.; Maia, G. Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochimica Acta 2020, 344, 136052.
  14. Song, X.; Li, N.; Zhang, H.; Wang, L.; Yan, Y.; Wang, H.; Wang, L.; Bian, Z. Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS Appl. Mater. Interfaces 2020, 12, 17519-17527.
  15. Bobo, M.V.; Paul, A.; Robb, A.J.; Arcidiacono, A.M.; Smith, M.D.; Hanson, K.; Vannucci, A.K. Bis-Cyclometalated Iridium Complexes Containing 4,4′-Bis(phosphonomethyl)-2,2′-bipyridine Ligands: Photophysics, Electrochemistry, and High-Voltage Dye-Sensitized Solar Cells. Inorg. Chem. 2020.
  16. Fortunato, G.V.; Cardoso, E.S.F.; Martini, B.K.; Maia, G. Ti/Pt−Pd-Based Nanocomposite: Effects of Metal Oxides on the Oxygen Reduction Reaction. ChemElectroChem 2020, 7, 1610-1618.
  17. Alipour Moghadam Esfahani, R.; Fruehwald, H.M.; Laschuk, N.O.; Sullivan, M.T.; Egan, J.G.; Ebralidze, I.I.; Zenkina, O.V.; Easton, E.B. A highly durable N-enriched titanium nanotube suboxide fuel cell catalyst support. Applied Catalysis B: Environmental 2020, 263, 118272.
  18. Xiao, X.; Li, X.; Wang, J.; Yan, G.; Wang, Z.; Guo, H.; Liu, Y. Robust assembly of urchin-like NiCo2O4/CNTs architecture as bifunctional electrocatalyst in Zn-Air batteries. Ceramics International 2020, 46, 6262-6269.
  19. Gonell, S.; Lloret, J.; Miller, A. An Iron Pyridyl-Carbene Catalyst for Low Overpotential CO2 reduction to CO: Mechanistic Comparisons with the Ruthenium Analogue and Photochemical Promotion. 2020.
  20. Chen, D.; Ji, J.; Jiang, Z.; Ling, M.; Jiang, Z.; Peng, X. Molecular-confinement synthesis of sub-nano Fe/N/C catalysts with high oxygen reduction reaction activity and excellent durability for rechargeable Zn-Air batteries. Journal of Power Sources 2020, 450, 227660.
  21. Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Bimetal Schottky Heterojunction Boosting Energy-Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Advanced Functional Materials 2020, n/a, 2000556.
  22. Ji, H.; Wang, M.; Liu, S.; Sun, H.; Liu, J.; Qian, T.; Yan, C. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochimica Acta 2020, 334, 135562.
  23. Lee, K.J.; Gruninger, C.T.; Lodaya, K.M.; Qadeer, S.; Griffith, B.E.; Dempsey, J.L. Analysis of multi-electron, multi-step homogeneous catalysis by rotating disc electrode voltammetry: theory, application, and obstacles. Analyst 2020, 145, 1258-1278.
  24. Gamero-Quijano, A.; Herzog, G.; Scanlon, M.D. Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochimica Acta 2020, 330, 135328.
  25. Zheng, W.; Tsang, C.; So, L.Y.; Liu, M.; Leung, Y.; Lee, L.Y.S. Highly efficient stepwise electrochemical degradation of antibiotics in water by in situ formed Cu(OH)2 nanowires. Applied Catalysis B: Environmental 2019, 256, 117824.
  26. Xiao, X.; Li, X.; Yu, G.; Wang, J.; Yan, G.; Wang, Z.; Guo, H. FeCox alloy nanoparticles encapsulated in three-dimensionally N-doped porous carbon/multiwalled carbon nanotubes composites as bifunctional electrocatalyst for zinc-air battery. Journal of Power Sources 2019, 438, 227019.
  27. Matin, M.A.; Saad, M.A.H.S.; Kumar, A.; Al-Marri, M.J.; Mansour, S.A. Effect of fuel content on the electrocatalytic methanol oxidation performance of Pt/ZnO nanoparticles synthesized by solution combustion. Applied Surface Science 2019, 492, 73-81.
  28. Zhang, L.; Wang, W.; Xu, G.; Song, H.; Yang, L.; Jia, D. Facile synthesis of CoxFe1−xP microcubes derived from metal-organic frameworks for efficient oxygen evolution reaction. Journal of Colloid and Interface Science 2019, 554, 202-209.
  29. Song, X.; Li, N.; Zhang, H.; Wang, H.; Wang, L.; Bian, Z. Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. Journal of Power Sources 2019, 435, 226771.
  30. Zhang, X.; Wang, Y.; Du, Y.; Qing, M.; Yu, F.; Tian, Z.Q.; Shen, P.K. Highly active N,S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochimica Acta 2019, 318, 272-280.
  31. Martinez, E.Y.; Li, C.W. Surface functionalization of Pt nanoparticles with metal chlorides for bifunctional CO oxidation. Polyhedron 2019, 170, 239-244.
  32. Bera, B.; Priyadarshani, D.; Joy, M.E.; Tripathi, A.K.; Maurya, S.K.; Kavaipatti, B.; Neergat, M. Origin of the Catalytic Activity Improvement of Electrochemically Treated Carbon – An Electrical and Electrochemical Investigation. J. Phys. Chem. C 2019.
  33. Li, Z.; Gao, Q.; Liang, X.; Zhang, H.; Xiao, H.; Xu, P.; Liu, Z. Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2019, 150, 93-100.
  34. Davydova, E.S.; Speck, F.D.; Paul, M.T.; Dekel, D.R.; Cherevko, S. Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells. ACS Catal. 2019, 9, 6837-6845.
  35. Ma, J.; Shi, M.; Yao, Z.; Mi, H.; Hoang, T.K.A. Hierarchically porous iron and nitrogen Co-doped carbon composite with enhanced ORR performance. Journal of Solid State Chemistry 2019, 276, 139-145.
  36. García-Mayagoitia, S.; Fernández-Luqueño, F.; Morales-Acosta, D.; Carrillo-Rodríguez, J.C.; García-Lobato, M.A.; de la Torre-Saenz, L.; Alonso-Lemus, I.L.; Rodrı́guez-Varela, F.J. Energy Generation from Pharmaceutical Residual Water in Microbial Fuel Cells Using Ordered Mesoporous Carbon and Bacillus subtilis as Bioanode. ACS Sustainable Chem. Eng. 2019, 7, 12179-12187.
  37. Das, D.; Raut, V. Hydrogen peroxide (H2O2) production in oxygen reduction reaction (ORR) proceeding in alkaline medium employing zinc based metal-organic framework. AIP Conference Proceedings 2019, 2115, 030546.
  38. Huang, S.; Meng, Y.; Cao, Y.; He, S.; Li, X.; Tong, S.; Wu, M. N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental 2019, 248, 239-248.
  39. Ashok, A.; Kumar, A.; Matin, M.A.; Tarlochan, F. Probing the effect of combustion controlled surface alloying in silver and copper towards ORR and OER in alkaline medium. Journal of Electroanalytical Chemistry 2019, 844, 66-77.
  40. Ren, J.; Yuan, Z. A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry. J. Mater. Chem. A 2019, 7, 13591-13601.
  41. Boone, C.V.; Maia, G. Lowering metal loadings onto Pt–Pd–Cu/graphene nanoribbon nanocomposites affects electrode collection efficiency and oxygen reduction reaction performance. Electrochimica Acta 2019, 303, 192-203.
  42. Xu, C.; Lin, Z.; Zhao, D.; Sun, Y.; Zhong, Y.; Ning, J.; Zheng, C.; Zhang, Z.; Hu, Y. Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J Mater Sci 2019, 54, 5412-5423.
  43. Sinha, S.; Ghosh, M.; Warren, J.J. Changing the Selectivity of O2 Reduction Catalysis with One Ligand Heteroatom. ACS Catal. 2019, 9, 2685-2691.
  44. Zhang, J.; Zhou, L.; Cheng, J.; Yin, X.; Kuang, W.; Li, Y. CoII-catalyzed room-temperature growth of MnO2 on the skeleton of carbonized zeolitic imidazolate framework-67 crystals for boosting oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 4699-4704.
  45. Guo, F.; Yang, H.; Liu, L.; Han, Y.; Al-Enizi, A.M.; Nafady, A.; Kruger, P.E.; Telfer, S.G.; Ma, S. Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 3624-3631.
  46. Liu, H.; Xu, C.; Du, Y.; Ma, F.; Li, Y.; Yu, J.; Zhen, L. Ultrathin Co9S8 nanosheets vertically aligned on N,S/rGO for low voltage electrolytic water in alkaline media. Sci. Rep. 2019, 9, 1951.
  47. Zhou, Q.; Zhao, G.; Rui, K.; Chen, Y.; Xu, X.; Dou, S.X.; Sun, W. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717-724.
  48. Xu, D.; Shi, Q.; Song, X.; Wang, H.; Bian, Z. Improving Oxygen Reduction Reaction and Selective Hydrodechlorination Performance Based on CoNi on Graphene Using Ionic Liquids as a Binder. J. Electrochem. Soc. 2019, 166, H157-H166.
  49. Ashok, A.; Kumar, A.; Bhosale, R.R.; Almomani, F.; Saleh Saad, M.A.H.; Suslov, S.; Tarlochan, F. Influence of fuel ratio on the performance of combustion synthesized bifunctional cobalt oxide catalysts for fuel cell application. International Journal of Hydrogen Energy 2019, 44, 436-445.
  50. Solis-Tobías, J.E.; Díaz-Guillén, J.A.; Pérez-Hernández, R.; Carrillo-Rodríguez, J.C.; Alonso-Lemus, I.L.; Rodríguez-Varela, F.J. High performance of the novel Pd-CeO2-NR/C (cerium oxide nanorods) nanocatalyst for the oxidation of C1, C2 and C3 organic molecules for fuel cells applications. International Journal of Hydrogen Energy 2018.
  51. Bezerra, L.S.; Rosa, P.P.; Fortunato, G.V.; Pizzuti, L.; Casagrande, G.A.; Maia, G. Electroreduction of a CoII coordination complex producing a metal–organic film with high performance toward electrocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 19590-19603.
  52. Guo, F.; Yang, H.; Aguila, B.; Al-Enizi, A.M.; Nafady, A.; Singh, M.; Bansal, V.; Ma, S. Cobalt nanoparticles incorporated into hollow doped porous carbon capsules as a highly efficient oxygen reduction electrocatalyst. Catal. Sci. Technol. 2018, 8, 5244-5250.
  53. Wu, Z.; Xu, S.; Yan, Q.; Chen, Z.; Ding, Y.; Li, C.; Liang, H.; Yu, S. Transition metal–assisted carbonization of small organic molecules toward functional carbon materials. 2018, 4, eaat0788.
  54. Wang, L.; Zhang, J.; Jiang, W.; Zhao, H.; Liu, H. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Applied Surface Science 2018, 433, 88-93.
  55. Li, Z.; Gao, Q.; Qian, W.; Tian, W.; Zhang, H.; Zhang, Q.; Liu, Z. Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon. Sci. Rep. 2018, 8, 1-8.
  56. Bliznyuk, V.N.; Conroy, N.A.; Xie, Y.; Podila, R.; Rao, A.M.; Powell, B.A. Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces. Phys. Chem. Chem. Phys. 2018, 20, 1752-1760.
  57. Ashok, A.; Kumar, A.; Ponraj, J.; Mansour, S.A.; Tarlochan, F. Single Step Synthesis of Porous NiCoO2 for Effective Electrooxidation of Glycerol in Alkaline Medium. J. Electrochem. Soc. 2018, 165, J3301-J3309.
  58. Zhang, J.; Wang, G.; Liao, Z.; Zhang, P.; Wang, F.; Zhuang, X.; Zschech, E.; Feng, X. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27-33.
  59. Bera, B.; Chakraborty, A.; Kar, T.; Leuaa, P.; Neergat, M. Density of States, Carrier Concentration, and Flat Band Potential Derived from Electrochemical Impedance Measurements of N-Doped Carbon and Their Influence on Electrocatalysis of Oxygen Reduction Reaction. 2017.
  60. Bogolowski, N.; Ngaleu, O.; Sakthivel, M.; Drillet, J.-. Long-life bifunctional BaSrCoFeO3/C gas diffusion electrode. Carbon 2017, 119, 511-518.
  61. Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
  62. Martin, D.J.; McCarthy, B.D.; Rountree, E.S.; Dempsey, J.L. Qualitative extension of the EC′ Zone Diagram to a molecular catalyst for a multi-electron, multi-substrate electrochemical reaction. Dalton Trans. 2016, 45, 9970-9976.
  63. Yates, M.D.; Golden, J.P.; Roy, J.; Strycharz-Glaven, S.M.; Tsoi, S.; Erickson, J.S.; El-Naggar, M.Y.; Barton, S.C.; Tender, L.M. Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 2015, 17, 32564-32570.
  64. Liang, H.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.
  65. Rahul, R.; Singh, R.K.; Bera, B.; Devivaraprasad, R.; Neergat, M. The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media. Phys. Chem. Chem. Phys. 2015, 17, 15146-15155.
  66. Kar, T.; Devivaraprasad, R.; Singh, R.K.; Bera, B.; Neergat, M. Reduction of graphene oxide – a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Adv. 2014, 4, 57781-57790.
  67. Naresh, N.; Wasim, F.G.S.; Ladewig, B.P.; Neergat, M. Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J. Mater. Chem. A 2013, 1, 8553-8559.
  68. Zhao, G.; Wang, X.; Wang, S.; Rui, K.; Chen, Y.; Yu, H.; Ma, J.; Dou, S.X.; Sun, W. Heteroatom-doped MoSe2 Nanosheets with Enhanced Hydrogen Evolution Kinetics for Alkaline Water Splitting. Chem. - Asian J. , 14, 301-306.
  69. Ziolkowska, D.A.; Jangam, J.S.D.; Rudakov, G.; Paronyan, T.M.; Akhtar, M.; Sumanasekera, G.U.; Jasinski, J.B. Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon , 115, 617–624.
  70. Alkan, A.; Klein, R.; Shylin, S.I.; Kemmer-Jonas, U.; Frey, H.; Wurm, F.R. Water-soluble and redox-responsive hyperbranched polyether copolymers based on ferrocenyl glycidyl ether. Polym. Chem. , 6, 7112–7118.
  71. Brüller, S.; Liang, H.; Kramm, U.I.; Krumpfer, J.W.; Feng, X.; Müllen, K. Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. , 3, 23799–23808.
  72. Coleman, E.J.; Co, A.C. Galvanic displacement of Pt on nanoporous copper: An alternative synthetic route for obtaining robust and reliable oxygen reduction activity. J. Catal. , 316, 191–200.
  73. Devivaraprasad, R.; Kar, T.; Chakraborty, A.; Singh, R.K.; Neergat, M.; Neergat, M. Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes. Phys. Chem. Chem. Phys. , 18, 11220–11232.
  74. Ebrahimi, N.; Noël, J.J.; Rodríguez, M.A.; Shoesmith, D.W. The self-sustaining propagation of crevice corrosion on the hybrid BC1 Ni–Cr–Mo alloy in hot saline solutions. Corros. Sci. , 105, 58–67.
  75. Kal, S.; Ayensu-Mensah, L.; Dinolfo, P.H. Evidence for catalytic water oxidation by a dimanganese tetrakis-Schiff base macrocycle. Inorg. Chim. Acta , 423, 201–206.
  76. Li, Q.; Schönleber, K.; Zeller, P.; Höhlein, I.; Rieger, B.; Wintterlin, J.; Krischer, K. Activation of silicon surfaces for H2 evolution by electrografting of pyridine molecules. Surf. Sci. , 631, 185–189.
  77. Liang, H.; Wu, Z.; Chen, L.; Li, C.; Yu, S. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy , 11, 366–376.
  78. Martin, D.J.; McCarthy, B.D.; Piro, N.A.; Dempsey, J.L. Synthesis and electrochemical characterization of a tridentate Schiff-base ligated Fe(II) complex. Polyhedron , 114, 200–204.
  79. Rountree, E.S.; Dempsey, J.L. Reactivity of Proton Sources with a Nickel Hydride Complex in Acetonitrile: Implications for the Study of Fuel-Forming Catalysts. Inorg. Chem. , 55, 5079–5087.
  80. Chakraborty, A.; Bera, B.; Priyadarshani, D.; Leuaa, P.; Choudhury, D.; Neergat, M. Electrochemical estimation of active site density on a metal-free carbon-based catalyst. RSC Adv. , 9, 466-475.
  81. Kar, T.; Devivaraprasad, R.; Bera, B.; Ramesh, R.; Neergat, M. Investigation on the reduction of the oxides of Pd and graphite in alkaline medium and the simultaneous evolution of oxygen reduction reaction and peroxide generation features. Electrochim. Acta , 191, 81–89.
  82. Rahul, R.; Singh, R.K.; Neergat, M. Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd–Co alloy catalysts. J. Electroanal. Chem. , 712, 223–229.
  83. B. Venarusso, L.; V. Boone, C.; Bettini, J.; Maia, G. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. , 6, 1714-1726.
  84. Chen, Y.; Liu, H.; Ha, N.; Licht, S.; Gu, S.; Li, W. Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nat. Catal. , 3, 1055-1061.
  85. Arnot, D.J.; Lambert, T.N. Bismuth Detection in Alkaline Electrolyte Via Anodic Stripping Voltammetry for Battery Separator Evaluation. Electroanalysis , n/a.
  86. Alkan, A.; Steinmetz, C.; Landfester, K.; Wurm, F.R. Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface. , 7, 26137–26144.
  87. Rossi, M.; Wen, K.; Caruso, F.; Belli, S. Emodin Scavenging of Superoxide Radical Includes π–π Interaction. X-Ray Crystal Structure, Hydrodynamic Voltammetry and Theoretical Studies. , 9, 194.
  88. Sosunov, A.V.; Henner, V.; Sumanasekera, G. Mild Fluorination of Carbon Nanocages to Enhance the Supercapacitor Performance. Proceedings of the 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). 62-64.
  89. Bera, B.; Kar, T.; Chakraborty, A.; Neergat, M. Influence of nitrogen-doping in carbon on equivalent distributed resistance and capacitance – Implications to electrocatalysis of oxygen reduction reaction. J. Electroanal. Chem. , 805, 184–192.
  90. Devivaraprasad, R.; Kar, T.; Leuaa, P.; Neergat, M. Recovery of Active Surface Sites of Shape-Controlled Platinum Nanoparticles Contaminated with Halide Ions and Its Effect on Surface-Structure. J. Electrochem. Soc. , 164, H551–H560.
  91. Elgrishi, N.; Kurtz, D.A.; Dempsey, J.L. Reaction Parameters Influencing Cobalt Hydride Formation Kinetics: Implications for Benchmarking H2 -Evolution Catalysts. J. Am. Chem. Soc. , 139, 239–244.
  92. Eisenhart, T.T.; Howland, W.C.; Dempsey, J.L. Proton-Coupled Electron Transfer Reactions with Photometric Bases Reveal Free Energy Relationships for Proton Transfer. J. Phys. Chem. B , 120, 7896–7905.
  93. Khosrowabadi Kotyk, J.F.; Ziller, J.W.; Yang, J.Y. Copper tetradentate N2Py2 complexes with pendant bases in the secondary coordination sphere: improved ligand synthesis and protonation studies. J. Coord. Chem. , 69, 1990–2002.
  94. Rountree, E.S.; Martin, D.J.; McCarthy, B.D.; Dempsey, J.L. Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst. ACS Catal. , 6, 3326–3335.
  95. Glass, E.N.; Fielden, J.; Huang, Z.; Xiang, X.; Musaev, D.G.; Lian, T.; Hill, C.L. Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer. Inorg. Chem. , 55, 4308–4319.
  96. Pitman, C.L.; Brereton, K.R.; Miller, A.J.M. Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium. J. Am. Chem. Soc. , 138, 2252–2260.
  97. Severt, S.Y.; Ostrovsky-Snider, N.A.; Leger, J.M.; Murphy, A.R. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization. , 7, 25281–25288.
  98. Rountree, E.S.; Dempsey, J.L. Potential-Dependent Electrocatalytic Pathways: Controlling Reactivity with pKa for Mechanistic Investigation of a Nickel-Based Hydrogen Evolution Catalyst. J. Am. Chem. Soc. , 137, 13371–13380.
  99. Hyde, J.T.; Hanson, K.; Vannucci, A.K.; Lapides, A.M.; Alibabaei, L.; Norris, M.R.; Meyer, T.J.; Harrison, D.P. Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces. ACS Appl. Mater. Interfaces , 7, 9554–9562.
  100. Mikkelsen, K.; Cassidy, B.; Hofstetter, N.; Bergquist, L.; Taylor, A.; Rider, D.A. Block Copolymer Templated Synthesis of Core–Shell PtAu Bimetallic Nanocatalysts for the Methanol Oxidation Reaction. Chem. Mater. , 26, 6928–6940.
  101. Pitman, C.L.; Miller, A.J.M. Molecular Photoelectrocatalysts for Visible Light-Driven Hydrogen Evolution from Neutral Water. ACS Catal. , 4, 2727–2733.
  102. McCarthy, B.D.; Martin, D.J.; Rountree, E.S.; Ullman, A.C.; Dempsey, J.L. Electrochemical Reduction of Brønsted Acids by Glassy Carbon in Acetonitrile—Implications for Electrocatalytic Hydrogen Evolution. Inorg. Chem. , 53, 8350–8361.
  103. Kahl, M.; Golden, T.D. Electrochemical Determination of Phenolic Acids at a Zn/Al Layered Double Hydroxide Film Modified Glassy Carbon Electrode. Electroanalysis , 26, 1664–1670.
  104. Devivaraprasad, R.; Ramesh, R.; Naresh, N.; Kar, T.; Singh, R.K.; Neergat, M. Oxygen Reduction Reaction and Peroxide Generation on Shape-Controlled and Polycrystalline Platinum Nanoparticles in Acidic and Alkaline Electrolytes. Langmuir , 30, 8995–9006.
  105. Barkey, D.; Chang, R.; Liu, D.; Chen, J. Observation of a Limit Cycle in Potential Oscillations during Copper Electrodeposition in a Leveler/Accelerant System. J. Electrochem. Soc. , 161, D97—-D101.
  106. Liu, Z.; Qu, J.; Fu, X.; Wang, Q.; Zhong, G.; Peng, F. Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium. Mater. Lett. , 142, 115-118.
  107. Yang, L.; Wang, T.; Wu, D. Porous Nitrogen-doped Reduced Graphene Oxide Gels as Efficient Supercapacitor Electrodes and Oxygen Reduction Reaction Electrocatalysts. Chin. J. Chem. , 38, 1123-1131.
Login
Register
Lost Password

Please enter your username (email address) and password below.

Confirm Logout

Are you sure you want to log out?

Request a Quote for this Cart

Below is the billing data we have on file. These details will be used on your quotation, so please update them here if you require any changes. Changing any details here updates them for your account.