Modulated Speed Rotator (MSR)

Part Number
AFMSRCE

The Pine Research MSR Rotator is the most popular electrode rotator in the world.  This flexible design may be used with Rotating Disk Electrodes (RDE), Rotating Ring-Disk Electrodes (RRDE), and Rotating Cylinder Electrodes (RCE).  Key features of the MSR Rotator include: adjustable range from 50 to 10,000 RPM; accuracy within 1% of the reading display; CE and ETL mark; silver-carbon brush contacts: red is for the disk, blue is for the ring; and hundreds of compatible Rotating Disk Electrodes (RDE), Rotating Ring-Disk Electrodes (RRDE), and Rotating Cylinder Electrodes (RCE) combinations.

Login to View Prices

Customers must be logged into their account to view prices. Not all regions provide pricing online. If you do not see prices, you can obtain them from the designated sales channel in your region.

The Pine Research MSR Rotator is the most popular electrode rotator in the world.  This flexible design may be used with Rotating Disk Electrodes (RDE), Rotating Ring-Disk Electrodes (RRDE), and Rotating Cylinder Electrodes (RCE).  Key features of the MSR Rotator include: adjustable range from 50 to 10,000 RPM; accuracy within 1% of the reading display; CE and ETL mark; silver-carbon brush contacts: red is for the disk, blue is for the ring; and hundreds of compatible Rotating Disk Electrodes (RDE), Rotating Ring-Disk Electrodes (RRDE), and Rotating Cylinder Electrodes (RCE) combinations.

Specify Power Cord

This product requires a power cord to connect to AC mains. Please specify the plug style used in your region when you order this product. We stock a variety of power cords.

Maximum Rotation Rate

All rotating electrodes, including RDE, RRDE, and RCE, have an assigned maximum rotation rate. The maximum rotation rate is specific to each electrode series. Do not exceed the maximum rotation rate when working with rotating electrodes.

Electrodes sold separately.

Given the wide range of electrodes we offer, rotators do not include electrodes (RDE, RRDE, RCE) and must be purchased separately. This way, you can select the perfect electrode for your applications.

Shafts sold separately.

Given the wide range of electrodes we offer, where each series requires one of several rotating shafts, shafts must be purchased separately for the MSR and MSR evo rotators. Consult the RDE, RRDE, and/or RCE specifications to learn which shaft is compatible.

The Pine Research MSR Rotator is the most popular rotating electrode configuration worldwide.  This flexible electrochemical instrument may be used with Rotating Disk Electrodes (RDE), Rotating Ring-Disk Electrodes (RRDE), and Rotating Cylinder Electrodes (RCE).  The MSR Rotator bears both the CE and ETL marks and is compatible with most international power configuration standards. The rotation rate of the electrode may be adjusted using a control knob on the front panel of the motor control unit, or alternately, the rotation rate can be controlled via an analog control signal provided by a potentiostat or by a third-party waveform generator.  The rotation rate may be viewed using the LCD display on the front panel.  The rotation rate is adjustable over a range from 50 to 10,000 RPM and is accurate to within 1% of the reading on the display.  A rotation rate may also be monitored via an output signal proportional to the rotation rate which is available on the front panel. The rotation rate may be controlled and modulated by a sine wave, square wave, or other externally generated waveform.  The outstanding acceleration characteristics of the motor and its control circuitry allow the rotation rate to follow the control waveform with very little error.  This feature is particularly desirable for techniques such as Hydrodynamic Modulation Voltammetry (HMV) . The rotator motor position is easily raised or lowered with respect to the cell platform, making immersion or removal of the rotating electrode tip quick and easy.  The enclosure base is made from chemically resistant polypropylene, and the large enclosure window provides a good view of rotating electrode during operation.  (A smaller base is available separately for using the rotator in a glove box or fume hood.) Electrode connections are made to the rotating shaft using silver-carbon brushes.  There are two pairs of contacts – the red pair is for the disk, and the blue pair is for the ring.
  1. Gianola, G.; Cosenza, A.; Roiron, C.; Pirri, C.F.; Specchia, S.; Atanassov, P.; Zeng, J. Effect of silica leaching treatment during template-assisted synthesis on the performance of FeNC catalysts for oxygen reduction reaction. Electrochimica Acta 2025, 525, 146085.
  2. Rowell, J.L.; Joshi, A.; Tan, H.; Yoon, D.; Manassa, J.; Stangel, A.; Bundschu, C.; Jia, Y.; Abruña, H.D.; Hovden, R.; Muller, D.A.; Robinson, R.D. Strain in Core–Shell Spinel Nanocrystals Enhances ORR Activity. ACS Catal. 2025, 9738-9748.
  3. Liu, C.; Yuan, Q.; Ding, R.; Yang, X.; Yin, X. Effect of H2O2 Concentration on the Electrochemical H2O2 Oxidation and Reduction Reactions on the Pt/C Catalyst in Acid Solutions. ACS Appl. Mater. Interfaces 2025.
  4. Yun, T.G.; Chen, B.; Wells, S.; Lim, Y.; Kim, J.S.; Guilherme Buzanich, A.; Radtke, M.; Waegele, M.M.; Risch, M.; Grimaud, A. Extrinsic and Intrinsic Factors Governing the Electrochemical Oxidation of Propylene in Aqueous Solutions. J. Am. Chem. Soc. 2025, 147, 12318-12330.
  5. Messias, I.; Kupferberg, J.; Bielinski, A.R.; Nagao, R.; Martinson, A.B.F.; Papa Lopes, P. Quantification of Reactive Oxygen Species Produced from Electrocatalytic Materials. ACS Catal. 2025, 15, 2750-2759.
  6. Rampf, A.; Marchfelder, C.; Zeis, R. Distribution of relaxation times analysis of rotating disk electrode impedance spectra. Electrochimica Acta 2025, 514, 145583.
  7. Xie, W.; Wang, E.; Sun, Q.; Ouyang, Z.; Tian, T.; Zhao, J.; Xiao, Y.; Lei, S.; Cheng, B. N-regulated three-dimensional turf-like carbon nanosheet loaded with FeCoNi nanoalloys as bifunctional electrocatalysts for durable zinc-air batteries. J. Colloid Interface Sci. 2024, 673, 80-91.
  8. Musabikha, S.; Priyotomo, G.; Nikitasari, A.; Prifiharni, S.; Kusumastuti, R.; Satrio, D.; Utama, I.K.A.P.; Mukhtasor, M.; Junianto, S.; Ismail, M.C. The effects of flow rate on impedance measurements of marine coatings using a rotating cylinder electrode. J Coat Technol Res 2024, 21, 2093-2104.
  9. Yin, F.; Liu, S.; Yang, X.; Lu, S.; Zhao, Y.; Chang, L.; Chen, Z.; Liu, H. Electrochemical Acid–Base Transport Limitation Principle for Low Electroactive Analyte Sensing in Wastewater Monitoring. Environ. Sci. Technol. 2024, 58, 18800-18810.
  10. Siddiqui, H.K.; Waidha, A.I.; Kanbach, S.; Palakkal, J.P.; Haller, S.; Yadav, S.; Kleinschmidt, P.; Schneider, J.J.; Clemens, O.; Alff, L.; Kramm, U.I. Influence of B-site variation on the bifunctional performance of LaFexCo1-xO3 for Zn-air battery. Electrochimica Acta 2024, 500, 144711.
  11. Li, S.; Wang, H.; Yu, W.; Ren, J.; Qiu, C.; Chen, Y.; Peng, Y.; Bian, Z. Molybdenum carbide nanoclusters with ultrafast electron transfer ability promotes molecular oxygen selective electrocatalytic reduction to hydroxyl radicals for pollutant control. Separation and Purification Technology 2024, 343, 127144.
  12. Pavlets, A.; Pankov, I.; Moguchikh, E.; Suprun, E.; Gerasimov, E.; Guterman, V.; Alekseenko, A. Deciphering nanostructural evolution of PtCu/C–N electrocatalyst via identical location transmission electron microscopy imaging: Gram-scale synthesis and superior activity in oxygen reduction reaction. J. Power Sources 2024, 613, 234898.
  13. Wang, Q.; Liu, X.; Zhu, J.; Jiang, H. Chlorine-oxidation-free dual hydrogen production by seawater electrolysis coupling formaldehyde oxidation. Electrochim. Acta 2024, 496, 144490.
  14. Gao, H.; Zhao, J.; Liu, Y.; Ma, Z.; Zhang, Y. FeNC@nitrogen doped porous carbon leaf-carbon nanotube hybrids for oxygen reduction reaction. Journal of Electroanalytical Chemistry 2024, 967, 118478.
  15. Duan, X.; Liu, H.; Zhang, W.; Ma, Q. Cerium doping modulates the surface electronic structure of IrOx/TiN to promote the stability of acid oxygen evolution. Electrochim. Acta 2024, 493, 144418.
  16. Huang, B.; Gu, Q.; Tang, X.; Lützenkirchen-Hecht, D.; Yuan, K.; Chen, Y. Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction. Nat Commun 2024, 15, 6077.
  17. Tsvik, L.; Zhang, S.; O’Hare, D.; Haltrich, D.; Sützl, L. More Than One Enzyme: Exploring Alternative FMN-Dependent L-Lactate Oxidases for Biosensor Development. ACS Omega 2024, 9, 29442-29452.
  18. Fan, M.; Guo, J.; Fang, G.; Tian, H.; You, Y.; Huang, Z.; Huang, J.; Jiang, H.; Xu, W.; Wan, J. Microwave-pulse assisted synthesis of tunable ternary-doped 2D molybdenum carbide for efficient hydrogen evolution. cs 2024, 4, N/A-N/A.
  19. Jiang, Y.; Xu, H.; Ma, B.; Zhang, Z.; Zhou, Y. Polypyrrole derived carbon nanotube aerogel based single-site Fe-N-C catalyst with superior ORR activity and durability. Fuel 2024, 366, 131404.
  20. Chauhan, P.; Georgi, M.; Herranz, J.; Müller, G.; Diercks, J.S.; Eychmüller, A.; Schmidt, T.J. Impact of Surface Composition Changes on the CO2-Reduction Performance of Au–Cu Aerogels. Langmuir 2024, 40, 12288-12300.
  21. Kim, H.; Kim, D.; Son, J.; Jang, S.; Chung, D.Y. Mixed Potential Driven Self-Cleaning Strategy in Direct Isopropanol Fuel Cells. ACS Catal. 2024, 14, 8480-8487.
  22. Liang, H.; Dong, Y.; Ding, Q.; Li, X.; Yu, M.; Li, P.; Duan, L.; Wang, Y. Dimetallic praseodymium-cobalt carbon nanotubes as highly efficient electrocatalyst for oxygen reduction reaction. Carbon Trends 2024, 15, 100350.
  23. He, Y.; Wang, X.; Paolinelli, L.; Young, D.; Mohamed-Saïd, M.; Singer, M. Effect of Oil-Water Intermittent Wetting on Corrosion Inhibition of Carbon Steel in CO2 Environment. 2024.
  24. Gomes, R.J.; Kumar, R.; Fejzić, H.; Sarkar, B.; Roy, I.; Amanchukwu, C.V. Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nat Catal 2024, 1-13.
  25. Yang, W.; Lai, S.; Li, K.; Ye, Q.; Dong, F.; Lin, Z. Advancing electrocatalytic water oxidation performances with tungsten-enhanced perovskite cobaltites. International Journal of Hydrogen Energy 2024, 65, 717-726.
  26. Cheraparambil, H.; Vega-Paredes, M.; Scheu, C.; Weidenthaler, C. Unraveling the Evolution of Dynamic Active Sites of LaNixFe1–xO3 Catalysts During OER. ACS Appl. Mater. Interfaces 2024, 16, 21997-22006.
  27. Göbel, M.; Ramuglia, A.R.; Zhartovska, E.; Budhija, V.; Ly, K.H.; Mroginski, M.A.; Schwalbe, M.; Weidinger, I.M. Protonation of Pendant Pyridine Substituents in an Iron Porphyrin Hangman Complex: Influence on Spectral Visibility and Electrocatalysis. J. Phys. Chem. C 2024.
  28. Wang, Y.; Kumar, A.; Budiyanto, E.; Cheraparambil, H.; Weidenthaler, C.; Tüysüz, H. Boron-Incorporated Cobalt–Nickel Oxide Nanosheets for Electrochemical Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2024, 7, 3145-3156.
  29. Wang, Z.; Sun, Z.; Li, K.; Fan, K.; Tian, T.; Jiang, H.; Jin, H.; Li, A.; Tang, Y.; Sun, Y.; Wan, P.; Chen, Y. Enhanced electrocatalytic performance for H2O2 generation by boron-doped porous carbon hollow spheres. iScience 2024, 27, 109553.
  30. Bettini, S.; Ottolini, M.; Coccimiglio, M.; Pagano, R.; García-Caballero, V.; Cano, M.; Giner-Casares, J.J.; Valli, L.; Giancane, G. Photoinduced and Electrochemical Applications of Carbon-Based Nanoparticles from Spent Coffee Grounds. J. Phys. Chem. C 2024, 128, 6180-6188.
  31. van der Heijden, O.; Park, S.; Vos, R.E.; Eggebeen, J.J.J.; Koper, M.T.M. Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Lett. 2024, 9, 1871-1879.
  32. Peng, Y.; Choi, J.; Bai, K.; Tian, L.; Pei, K.; Zhang, Y.; Banham, D. Screening reversal tolerance through rotating disc electrode studies. International Journal of Hydrogen Energy 2024, 62, 228-235.
  33. Li, S.; Wang, H.; Qiu, C.; Ren, J.; Peng, Y.; Liu, Y.; Dong, F.; Bian, Z. Electronic structure regulation of Fe single atom coordinated nitrogen doping MoS2 catalyst enhances the Fenton-like reaction efficient for organic pollutant control. Journal of Hazardous Materials 2024, 467, 133756.
  34. Xue, F.; Fu, X.; Kang, S.; Sheng, X.; Li, B.; Shen, P.K.; Zhu, J.; Nie, M.; Lu, S.; Lu, W. Mo-Based MXene-Supported Pt Nanoparticles for Highly Durable Oxygen Reduction in Acidic Electrolytes. ACS Appl. Nano Mater. 2024, 7, 6305-6314.
  35. Askari, M.J.; Kallick, J.D.; McCrory, C.C.L. Selective Reduction of Aqueous Nitrate to Ammonium with an Electropolymerized Chromium Molecular Catalyst. J. Am. Chem. Soc. 2024, 146, 7439-7455.
  36. Zhang, P.; Chen, H.; Zhu, H.; Chen, K.; Li, T.; Zhao, Y.; Li, J.; Hu, R.; Huang, S.; Zhu, W.; Liu, Y.; Pan, Y. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat Commun 2024, 15, 2062.
  37. Guo, Y.; Xue, Y.; Zhou, Z. Revolutionizing Zn-Air batteries with chainmail catalysts: Ultrathin carbon-encapsulated FeNi alloys on N-doped graphene for enhanced oxygen electrocatalysis. Chinese Journal of Catalysis 2024, 58, 206-215.
  38. Kunkel, R.; Fath, M.; Schmiedl, D.; Schmidt, V.M.; Tübke, J. Electroreduction of divanillin to polyvanillin in an electrochemical flow reactor. BMC Chemistry 2024, 18, 28.
  39. Tekaligne, T.M.; Bezabh, H.K.; Merso, S.K.; Shitaw, K.N.; Weret, M.A.; Nikodimos, Y.; Jiang, S.; Yang, S.; Wang, C.; Wu, S.; Su, W.; Hwang, B.J. Enhancing aluminum foil performance in aqueous and organic electrolytes: dual-secure passivation with phthalocyanine as a corrosion inhibitor. J. Mater. Chem. A 2024, 12, 2157-2171.
  40. Fathi Tovini, M.; Damjanović, A.M.; El-Sayed, H.A.; Strehle, B.; Speder, J.; Ghielmi, A.; Gasteiger, H.A. Irreducible IrO2 Anode Co-Catalysts for PEM Fuel Cell Voltage Reversal Mitigation and Their Stability Under Start-Up/Shut-Down Conditions. J. Electrochem. Soc. 2024, 171, 074510.
  41. Kost, M.; Kornherr, M.; Zehetmaier, P.; Illner, H.; Jeon, D.S.; Gasteiger, H.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Chemical Epitaxy of Iridium Oxide on Tin Oxide Enhances Stability of Supported OER Catalyst. Small 2024, 20, 2404118.
  42. Xu, Y.; Yan, Y.; Pang, M.; Wang, L.; Zhao, Y.; Deng, C.; Cui, Y.; Guo, X.; Wang, P.; Ding, W. A surface regulation strategy to fabricate Cu-Nx sites of high homogeneity with countable activity towards oxygen reduction. Applied Surface Science 2021, 560, 150054.
  43. Peng, Y.; Choi, J.; Bai, K.; Zhang, Y.; Banham, D. Pulsed vs. galvanostatic accelerated stress test protocols: Comparing predictions for anode reversal tolerance in proton exchange membrane fuel cells. Journal of Power Sources 2021, 500, 229986.
  44. Wojtysiak, M.; Jędraczka, A.; Stępień, M.; Kutyła, D.; Kowalik, R. Electrodeposition of Pd–Se thin films. Electrochemistry Communications 2021, 127, 107053.
  45. Liu, B.; Tang, C.W.; Jiang, H.; Jia, G.; Zhao, T. Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries. ACS Sustainable Chem. Eng. 2021, 9, 6258-6265.
  46. Martínez-Séptimo, A.; Valenzuela, M.A.; Del Angel, P.; González-Huerta, R.d.G. IrRuOx/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media. International Journal of Hydrogen Energy 2021.
  47. Liu, B.; Tang, C.W.; Zhang, C.; Jia, G.; Zhao, T. Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery. Chem. Mater. 2021, 33, 978-986.
  48. Winkler, M.; Duan, J.; Rutz, A.; Felbek, C.; Scholtysek, L.; Lampret, O.; Jaenecke, J.; Apfel, U.; Gilardi, G.; Valetti, F.; Fourmond, V.; Hofmann, E.; Léger, C.; Happe, T. A safety cap protects hydrogenase from oxygen attack. Nat. Commun. 2021, 12, 756.
  49. Guo, Y.; Wang, T.; Wu, D.; Tan, Y. One-step synthesis of in-situ N, S self-doped carbon nanosheets with hierarchical porous structure for high performance supercapacitor and oxygen reduction reaction electrocatalyst. Electrochimica Acta 2021, 366, 137404.
  50. Mirshekari, G.; Ouimet, R.; Zeng, Z.; Yu, H.; Bliznakov, S.; Bonville, L.; Niedzwiecki, A.; Capuano, C.; Ayers, K.; Maric, R. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: Long-term durability assessment. International Journal of Hydrogen Energy 2021, 46, 1526-1539.
  51. Sachse, R.; Pflüger, M.; Velasco-Vélez, J.; Sahre, M.; Radnik, J.; Bernicke, M.; Bernsmeier, D.; Hodoroaba, V.; Krumrey, M.; Strasser, P.; Kraehnert, R.; Hertwig, A. Assessing Optical and Electrical Properties of Highly Active IrOx Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catal. 2020, 10, 14210-14223.
  52. Tian, W.; Gao, Q.; VahidMohammadi, A.; Dang, J.; Li, Z.; Liang, X.; Hamedi, M.M.; Zhang, L. Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal 2020, 420, 127601.
  53. Balkan, T.; Küçükkeçeci, H.; Zarenezhad, H.; Kaya, S.; Metin, Ö. One-pot synthesis of monodisperse copper–silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds 2020, 831, 154787.
  54. Lv, S.; Chen, J.; Chen, X.; Chen, J.; Li, Y. Simple 2D/0D CoP Integration in a Metal-Organic Framework-derived Bifunctional Electrocatalyst for Efficient Overall Water Splitting. ChemSusChem 2020, 13, 3495-3503.
  55. Alipour Moghadam Esfahani, R.; Easton, E.B. Exceptionally durable Pt/TOMS catalysts for fuel cells. Applied Catalysis B: Environmental 2020, 268, 118743.
  56. Wang, H.; Zhang, W.; Bai, P.; Xu, L. Ultrasound-assisted transformation from waste biomass to efficient carbon-based metal-free pH-universal oxygen reduction reaction electrocatalysts. Ultrasonics Sonochemistry 2020, 65, 105048.
  57. Liu, Q.; Li, X.; Yan, C.; Tang, A. A dopamine-based high redox potential catholyte for aqueous organic redox flow battery. Journal of Power Sources 2020, 460, 228124.
  58. Cardoso, E.S.F.; Fortunato, G.V.; Palm, I.; Kibena-Põldsepp, E.; Greco, A.S.; Júnior, J.L.R.; Kikas, A.; Merisalu, M.; Kisand, V.; Sammelselg, V.; Tammeveski, K.; Maia, G. Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochimica Acta 2020, 344, 136052.
  59. Baturhan Orman, E.; Sağlam, M.B.; Özkaya, A.R. Novel peripherally substituted metal-free, zinc (II), and cobalt (II) phthalocyanines with 1,1’-thiobis(2-napthol) and additional tetraphthalonitrile groups: Synthesis, aggregation behavior, electrochemical redox and electrocatalytic oxygen reducing properties. Synthetic Metals 2020, 263, 116351.
  60. Song, X.; Li, N.; Zhang, H.; Wang, L.; Yan, Y.; Wang, H.; Wang, L.; Bian, Z. Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS Appl. Mater. Interfaces 2020, 12, 17519-17527.
  61. Fortunato, G.V.; Cardoso, E.S.F.; Martini, B.K.; Maia, G. Ti/Pt−Pd-Based Nanocomposite: Effects of Metal Oxides on the Oxygen Reduction Reaction. ChemElectroChem 2020, 7, 1610-1618.
  62. Alipour Moghadam Esfahani, R.; Fruehwald, H.M.; Laschuk, N.O.; Sullivan, M.T.; Egan, J.G.; Ebralidze, I.I.; Zenkina, O.V.; Easton, E.B. A highly durable N-enriched titanium nanotube suboxide fuel cell catalyst support. Applied Catalysis B: Environmental 2020, 263, 118272.
  63. Ren, J.; Chen, L.; Yang, D.; Yuan, Z. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental 2020, 263, 118352.
  64. Qi, J.; Zhang, W.; Zhou, H.; Xu, L. Dual potassium salt-assisted lyophilization of natural fibres for the high-yield synthesis of one-dimensional carbon microtubes for supercapacitors and the oxygen reduction reaction. New J. Chem. 2020, 44, 6297-6311.
  65. Kottaichamy, A.R.; Begum, S.; Devendrachari, M.C.; Bhat, Z.M.; Thimmappa, R.; Nimbegondi Kotresh, H.M.; Vinod, C.P.; Thotiyl, M.O. Geometrical Isomerism Directed Electrochemical Sensing. Anal. Chem. 2020, 92, 4541-4547.
  66. Goyal, A.; Marcandalli, G.; Mints, V.A.; Koper, M.T.M. Competition between CO2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions. J. Am. Chem. Soc. 2020, 142, 4154-4161.
  67. Ji, H.; Wang, M.; Liu, S.; Sun, H.; Liu, J.; Qian, T.; Yan, C. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochimica Acta 2020, 334, 135562.
  68. Esayah, A.; Kelley, M.; Howell, A.; Shulder, S.J.; Mishra, B.; Olson, D.; Porter, J. Flow Accelerated Corrosion of Carbon Steel with Droplet Impingement Using a Modified Rotating Cylinder Electrode Experiment. Corrosion 2020, 76, 202-209.
  69. Yin, X.; Lin, L.; Martinez, U.; Zelenay, P. 2,2′-Dipyridylamine as Heterogeneous Organic Molecular Electrocatalyst for Two-Electron Oxygen Reduction Reaction in Acid Media. ACS Appl. Energy Mater. 2019, 2, 7272-7278.
  70. Vos, J.G.; Koper, M.T.M. Examination and prevention of ring collection failure during gas-evolving reactions on a rotating ring-disk electrode. Journal of Electroanalytical Chemistry 2019, 850, 113363.
  71. Zhang, X.; Wang, Y.; Du, Y.; Qing, M.; Yu, F.; Tian, Z.Q.; Shen, P.K. Highly active N,S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochimica Acta 2019, 318, 272-280.
  72. Moreira, J.; Bocalon Lima, V.; Athie Goulart, L.; Lanza, M.R.V. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: Quinones and azo compounds employed as redox modifiers. Applied Catalysis B: Environmental 2019, 248, 95-107.
  73. Huang, S.; Meng, Y.; Cao, Y.; He, S.; Li, X.; Tong, S.; Wu, M. N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental 2019, 248, 239-248.
  74. Li, T.; Li, S.; Zuo, Y.; Zhu, G.; Han, H. Amorphous nickel boride membrane coated PdCuCo dendrites as high-efficiency catalyst for oxygen reduction and methanol oxidation reaction. Materials Today Energy 2019, 12, 179-185.
  75. Yuan, K.; Lu, C.; Sfaelou, S.; Liao, X.; Zhuang, X.; Chen, Y.; Scherf, U.; Feng, X. In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy 2019, 59, 207-215.
  76. Liu, T.; Guo, Y.; Zhang, Z.; Miao, Z.; Zhang, X.; Su, Z. Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sensors and Actuators B: Chemical 2019, 286, 370-376.
  77. Chen, P.; Zang, J.; Zhou, S.; Jia, S.; Tian, P.; Cai, H.; Gao, H.; Wang, Y. N-doped 3D porous carbon catalyst derived from biowaste Triarrhena sacchariflora panicle for oxygen reduction reaction. Carbon 2019, 146, 70-77.
  78. Chai, L.; Zhang, L.; Wang, X.; Xu, L.; Han, C.; Li, T.; Hu, Y.; Qian, J.; Huang, S. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 2019, 146, 248-256.
  79. Boone, C.V.; Maia, G. Lowering metal loadings onto Pt–Pd–Cu/graphene nanoribbon nanocomposites affects electrode collection efficiency and oxygen reduction reaction performance. Electrochimica Acta 2019, 303, 192-203.
  80. Chen, Y.; Liu, C.; Hsu, C.; Hu, C. An integrated strategy for improving the desalination performances of activated carbon-based capacitive deionization systems. Electrochimica Acta 2019, 302, 277-285.
  81. Zhu, A.; Qiao, L.; Tan, P.; Zeng, W.; Ma, Y.; Dong, R.; Pan, J. Boosted electrocatalytic activity of nitrogen-doped porous carbon triggered by oxygen functional groups. Journal of Colloid and Interface Science 2019, 541, 133-142.
  82. Mathur, A.; Halder, A. One-step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc–air batteries. Catal. Sci. Technol. 2019, 9, 1245-1254.
  83. Cermenek, B.; Ranninger, J.; Feketeföldi, B.; Letofsky-Papst, I.; Kienzl, N.; Bitschnau, B.; Hacker, V. Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell. Nano Res. 2019, 12, 683-693.
  84. Yu, Q.; Yin, S.; Zhang, J.; Yin, H. Structure dependent activity and durability towards oxygen reduction reaction on Pt modified nanoporous gold. Electrochimica Acta 2019, 298, 599-608.
  85. Liu, Z.; Abdelhafiz, A.A.; Jiang, Y.; Qu, C.; Chang, I.; Zeng, J.; Liao, S.; Alamgir, F.M. Pt/graphene with intercalated carbon nanotube spacers introduced by electrostatic self-assembly for fuel cells. Materials Chemistry and Physics 2019, 225, 371-378.
  86. Liao, X.; Zhang, L.; Wang, S.; Lei, J. Stepwise electrocatalytic reduction of nitric oxide by cationic picket-fence porphyrin in an ultrathin phospholipid film. Electrochemistry Communications 2019, 100, 60-63.
  87. Li, T.; Deng, H.; Liu, J.; Jin, C.; Song, Y.; Wang, F. First-row transition metals and nitrogen co-doped carbon nanotubes: The exact origin of the enhanced activity for oxygen reduction reaction. Carbon 2019, 143, 859-868.
  88. Yu, H.; Davydova, E.S.; Ash, U.; Miller, H.A.; Bonville, L.; Dekel, D.R.; Maric, R. Palladium-ceria nanocatalyst for hydrogen oxidation in alkaline media: Optimization of the Pd–CeO2 interface. Nano Energy 2019, 57, 820-826.
  89. Zhang, J.; Zhou, L.; Cheng, J.; Yin, X.; Kuang, W.; Li, Y. CoII-catalyzed room-temperature growth of MnO2 on the skeleton of carbonized zeolitic imidazolate framework-67 crystals for boosting oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 4699-4704.
  90. Yu, M.; Moon, G.; Bill, E.; Tüysüz, H. Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Appl. Energy Mater. 2019, 2, 1199-1209.
  91. Wang, S.; Wang, X.; Deng, Q.; Mao, Y.; Wang, G. Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages. J Mater Sci: Mater Electron 2019, 30, 6608-6616.
  92. He, X.; Yi, X.; Yin, F.; Chen, B.; Li, G.; Yin, H. Less active CeO2 regulating bifunctional oxygen electrocatalytic activity of Co3O4@N-doped carbon for Zn–air batteries. J. Mater. Chem. A 2019, 7, 6753-6765.
  93. Abrego-Martínez, J.C.; Wang, Y.; Moreno-Zuria, A.; Wei, Q.; Cuevas-Muñiz, F.M.; Arriaga, L.G.; Sun, S.; Mohamedi, M. Nanostructured Mn2O3/Pt/CNTs selective electrode for oxygen reduction reaction and methanol tolerance in mixed-reactant membraneless micro-DMFC. Electrochimica Acta 2019, 297, 230-239.
  94. Guo, F.; Yang, H.; Liu, L.; Han, Y.; Al-Enizi, A.M.; Nafady, A.; Kruger, P.E.; Telfer, S.G.; Ma, S. Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 3624-3631.
  95. Chang, C.; Chu, Y.; Yan, H.; Liao, Y.; Chen, H.M. Revealing the Structural Transformation of Rutile RuO2 via In-Situ X-ray Absorption Spectroscopy during Oxygen Evolution Reaction. Dalton Trans. 2019, 48, 7122-71129.
  96. Kaviani, S.; Mohammadi Ghaleni, M.; Tavakoli, E.; Nejati, S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 2019, 1, 552-560.
  97. Wu, Z.; Chiang, M.; Lee, C. Tuning saw-toothed morphology on Pd/Pt nanocubes as oxygen reduction catalysts by co-surfactant synthesis method. Applied Surface Science 2019, 467-468, 844-850.
  98. Chandrasekaran, S.; Zhang, P.; Peng, F.; Bowen, C.; Huo, J.; Deng, L. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A 2019.
  99. Shen, X.; Dai, S.; Zhang, S.; Lu, Z.; Zhang, C.; Graham, G.W.; Lei, Y.; Pan, X.; Peng, Z. Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles. Chem. Mater. 2019, 31, 1720-1728.
  100. Zheng, L.; Zheng, S.; Wei, H.; Du, L.; Zhu, Z.; Chen, J.; Yang, D. Palladium/Bismuth/Copper Hierarchical Nano-Architectures for Efficient Hydrogen Evolution and Stable Hydrogen Detection. ACS Appl. Mater. Interfaces 2019, 11, 6248-6256.
  101. Ko, Y.; Park, H.; Lee, B.; Bae, Y.; Park, S.K.; Kang, K. A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. J. Mater. Chem. A 2019, 7, 6491-6498.
  102. Liu, Y.; Vu, M.; Lim, J.; Do, T.; Hatzell, M.C. Influence of Carbonaceous Species on Aqueous Photo-catalytic Nitrogen Fixation by Titania. Faraday Discuss. 2019.
  103. Theerthagiri, J.; Cardoso, E.S.F.; Fortunato, G.V.; Casagrande, G.A.; Senthilkumar, B.; Madhavan, J.; Maia, G. Highly Electroactive Ni Pyrophosphate/Pt Catalyst toward Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 4969-4982.
  104. Zhang, M.; Tao, H.; Liu, Y.; Yan, C.; Hong, S.; Masa, J.; Robertson, A.W.; Liu, S.; Qiu, J.; Sun, Z. Ultrasound-Assisted Nitrogen and Boron Codoping of Graphene Oxide for Efficient Oxygen Reduction Reaction. ACS Sustainable Chem. Eng. 2019, 7, 3434-3442.
  105. Li, B.; Wang, J.; Gao, X.; Qin, C.; Yang, D.; Lv, H.; Xiao, Q.; Zhang, C. High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res. 2019, 12, 281-287.
  106. Malko, D.; Guo, Y.; Jones, P.; Britovsek, G.; Kucernak, A. Heterogeneous iron containing carbon catalyst (Fe-N/C) for epoxidation with molecular oxygen. Journal of Catalysis 2019, 370, 357-363.
  107. Pachimatla, R.; Thomas, M.; Oc, S.R.; Srinivasan, R. Analysis of Instabilities in Electrochemical Systems Using Nonlinear Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2019, 166, H304-H312.
  108. Chang, T.; Leygraf, C.; Wallinder, I.O.; Jin, Y. Understanding the Barrier Layer Formed via Adding BTAH in Copper Film Electrodeposition. J. Electrochem. Soc. 2019, 166, D10-D20.
  109. Madkikar, P.; Menga, D.; Harzer, G.S.; Mittermeier, T.; Siebel, A.; Wagner, F.E.; Merz, M.; Schuppler, S.; Nagel, P.; Muñoz-García, A.B.; Pavone, M.; Gasteiger, H.A.; Piana, M. Nanometric Fe-Substituted ZrO2 on Carbon Black as PGM-Free ORR Catalyst for PEMFCs. J. Electrochem. Soc. 2019, 166, F3032-F3043.
  110. Yu, H.; Danilovic, N.; Wang, Y.; Willis, W.; Poozhikunnath, A.; Bonville, L.; Capuano, C.; Ayers, K.; Maric, R. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Applied Catalysis B: Environmental 2018, 239, 133-146.
  111. Wu, Z.; Chiang, M.; Wang, T.; Lee, C. Dendritic Pt shells coated on concave Pd nanocrystals: synthesis and use as electrocatalysts for acidic oxygen reduction reaction. International Journal of Hydrogen Energy 2018, 43, 22195-22204.
  112. Chen, J.; Li, Y.; Lu, N.; Tian, C.; Han, Z.; Zhang, L.; Fang, Y.; Qian, B.; Jiang, X.; Cui, R. Nanoporous PdCe bimetallic nanocubes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media. J. Mater. Chem. A 2018, 6, 23560-23568.
  113. Su, H.; Zhou, S.; Zhang, X.; Sun, H.; Zhang, H.; Xiao, Y.; Yu, K.; Dong, Z.; Dai, X.; Huang, X. Metal–organic frameworks-derived core–shell Fe3O4/Fe3N@graphite carbon nanocomposites as excellent non-precious metal electrocatalyst for oxygen reduction. Dalton Trans. 2018, 47, 16567-16577.
  114. Zhang, Q.; He, J.; Guo, R.; Zhao, Y.; Zhang, W.; Zhang, W.; Pang, S.; Ding, Y. Assembling Highly Coordinated Pt Sites on Nanoporous Gold for Efficient Oxygen Electroreduction. ACS Appl. Mater. Interfaces 2018, 10, 39705-39712.
  115. Adhikary, S.D.; Tiwari, A.; Nagaiah, T.C.; Mandal, D. Stabilization of Cobalt-Polyoxometalate over Poly(ionic liquid) Composites for Efficient Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces 2018, 10, 38872-38879.
  116. Zeng, H.; Zhang, Y.H.; Ma, T.M.; Huo, W.S. Investigation on Electrochemical Behavior and Catalytic Function of Glassy Carbon Electrode on the Basis of Magnetic Nano-particle with Simultaneous Incorporation of Myoglobin and Electron Mediator. J Inorg Organomet Polym 2018, 28, 2730-2741.
  117. Schmies, H.; Hornberger, E.; Anke, B.; Jurzinsky, T.; Nong, H.N.; Dionigi, F.; Kühl, S.; Drnec, J.; Lerch, M.; Cremers, C.; Strasser, P. Impact of Carbon Support Functionalization on the Electrochemical Stability of Pt Fuel Cell Catalysts. Chem. Mater. 2018, 30, 7287-7295.
  118. Bezerra, L.S.; Rosa, P.P.; Fortunato, G.V.; Pizzuti, L.; Casagrande, G.A.; Maia, G. Electroreduction of a CoII coordination complex producing a metal–organic film with high performance toward electrocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 19590-19603.
  119. Guo, F.; Yang, H.; Aguila, B.; Al-Enizi, A.M.; Nafady, A.; Singh, M.; Bansal, V.; Ma, S. Cobalt nanoparticles incorporated into hollow doped porous carbon capsules as a highly efficient oxygen reduction electrocatalyst. Catal. Sci. Technol. 2018, 8, 5244-5250.
  120. Woo, J.; Yang, S.Y.; Sa, Y.J.; Choi, W.; Lee, M.; Lee, H.; Shin, T.J.; Kim, T.; Joo, S.H. Promoting Oxygen Reduction Reaction Activity of Fe–N/C Electrocatalysts by Silica-Coating-Mediated Synthesis for Anion-Exchange Membrane Fuel Cells. Chem. Mater. 2018, 30, 6684-6701.
  121. Zhang, F.; Huang, S.; Wang, X.; Jia, C.; Du, Y.; Wang, Q. Redox-targeted catalysis for vanadium redox-flow batteries. Nano Energy 2018, 52, 292-299.
  122. Li, Y.; Polakovic, T.; Curtis, J.; Shumlas, S.L.; Chatterjee, S.; Intikhab, S.; Chareev, D.A.; Volkova, O.S.; Vasiliev, A.N.; Karapetrov, G.; Snyder, J. Tuning the activity/stability balance of anion doped CoSxSe2−x dichalcogenides. Journal of Catalysis 2018, 366, 50-60.
  123. Jiang, S.; Ithisuphalap, K.; Zeng, X.; Wu, G.; Yang, H. 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions. Journal of Power Sources 2018, 399, 66-75.
  124. Kwabi, D.G.; Lin, K.; Ji, Y.; Kerr, E.F.; Goulet, M.; De Porcellinis, D.; Tabor, D.P.; Pollack, D.A.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule 2018, 2, 1894-1906.
  125. Wang, W.; Fan, X.; Qin, Y.; Liu, J.; Yan, C.; Zeng, C. The reduction reaction kinetics of vanadium(V) in acidic solutions on a platinum electrode with unusual difference compared to carbon electrodes. Electrochimica Acta 2018, 283, 1313-1322.
  126. Chen, K.Y.; Schauer, P.A.; Patrick, B.O.; Berlinguette, C.P. Correlating cobalt redox couples to photovoltage in the dye-sensitized solar cell. Dalton Trans. 2018, 47, 11942-11952.
  127. Wang, Q.; Zhang, Z.; Wang, M.; Liu, F.; Jiang, L.; Hong, B.; Li, J.; Lai, Y. Bioinspired fiber-like porous Cu/N/C electrocatalyst facilitating electron transportation toward oxygen reaction for metal–air batteries. Nanoscale 2018, 10, 15819-15825.
  128. Tsurumaki, H.; Mochizuki, T.; Tei, H.; Todoroki, N.; Wadayama, T. Rotating Disk Electrode – Online Electrochemical Mass Spectrometry for Oxygen Reduction Reaction on Pt Electrode Surfaces. ECS Trans. 2018, 86, 447-452.
  129. Todoroki, N.; Wadayama, T. Oxygen Reduction and Oxygen Evolution Reaction Activity on Co/Pt(111) Surfaces in Alkaline Solution. ECS Trans. 2018, 86, 569-574.
  130. Zhang, N.; Li, L.; Chu, Y.; Zheng, L.; Sun, S.; Zhang, G.; He, H.; Zhao, J. High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catalysis Today 2018.
  131. Mandula, T.R.; Srinivasan, R. Electrochemical impedance spectroscopic studies on niobium anodic dissolution in HF. J Solid State Electrochem 2017, 21, 3155-3167.
  132. Guo, S.; Leavitt, J.J.; Zhou, X.; Xie, Y.; Tietze, S.; Zhu, Y.; Lawver, A.; Lahti, E.; Zhang, J. Effects of flow, Si inhibition, and concurrent corrosion of dissimilar metals on the corrosion of aluminium in the environment following a loss-of-coolant accident. Corrosion Science 2017, 128, 100-109.
  133. Zhang, J.; Wang, G.; Liao, Z.; Zhang, P.; Wang, F.; Zhuang, X.; Zschech, E.; Feng, X. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27-33.
  134. Voskanyan, A.A.; Li, C.V.; Chan, K. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion. ACS Appl. Mater. Interfaces 2017, 9, 33298-33307.
  135. Lim, C.F.C.; Harrington, D.A.; Marshall, A.T. Effects of mass transfer on the electrocatalytic CO2 reduction on Cu. Electrochimica Acta 2017, 238, 56-63.
  136. Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
  137. Zhao, S.; Rasimick, B.; Mustain, W.; Xu, H. Highly durable and active Co3O4 nanocrystals supported on carbon nanotubes as bifunctional electrocatalysts in alkaline media. Applied Catalysis B: Environmental 2017, 203, 138-145.
  138. Amrutha, M.S.; Fasmin, F.; Ramanathan, S. Effect of HF Concentration on Anodic Dissolution of Titanium. J. Electrochem. Soc. 2017, 164, H188-H197.
  139. Amrutha, M.S.; Fasmin, F.; Ilayaraja, P.; Chandran, S.; Srinivasan, R. Anodic Dissolution of Ti in Acidic Fluoride Media. ECS Trans. 2016, 72, 75-90.
  140. Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S. Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catal. 2016, 6, 4720-4728.
  141. Evgeny, B.; Hughes, T.; Eskin, D. Effect of surface roughness on corrosion behaviour of low carbon steel in inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corrosion Science 2016, 103, 196-205.
  142. Wang, J.; Wu, H.; Gao, D.; Miao, S.; Wang, G.; Bao, X. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 2015, 13, 387-396.
  143. Wang, J.; Wang, G.; Miao, S.; Li, J.; Bao, X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discuss. 2015, 176, 135-151.
  144. Zhao, S.; Wangstrom, A.E.; Liu, Y.; Rigdon, W.A.; Mustain, W.E. Stability and Activity of Pt/ITO Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Electrochimica Acta 2015, 157, 175-182.
  145. Barmatov, E.; Hughes, T.; Nagl, M. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions. Corrosion Science 2015, 92, 85-94.
  146. Schwenke, K.U.; Herranz, J.; Gasteiger, H.A.; Piana, M. Reactivity of the Ionic Liquid Pyr14TFSI with Superoxide Radicals Generated from KO2 or by Contact of O2 with Li7Ti5O12. J. Electrochem. Soc. 2015, 162, A905-A914.
  147. Henning, S.; Herranz, J.; Gasteiger, H.A. Bulk-Palladium and Palladium-on-Gold Electrocatalysts for the Oxidation of Hydrogen in Alkaline Electrolyte. J. Electrochem. Soc. 2015, 162, F178-F189.
  148. Amin, H.M.A.; Baltruschat, H.; Wittmaier, D.; Friedrich, K.A. A Highly Efficient Bifunctional Catalyst for Alkaline Air-Electrodes Based on a Ag and Co3O4 Hybrid: RRDE and Online DEMS Insights. Electrochimica Acta 2015, 151, 332-339.
  149. You, C.; Liao, S.; Li, H.; Hou, S.; Peng, H.; Zeng, X.; Liu, F.; Zheng, R.; Fu, Z.; Li, Y. Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon 2014, 69, 294-301.
  150. Rheinländer, P.J.; Herranz, J.; Durst, J.; Gasteiger, H.A. Kinetics of the Hydrogen Oxidation/Evolution Reaction on Polycrystalline Platinum in Alkaline Electrolyte Reaction Order with Respect to Hydrogen Pressure. J. Electrochem. Soc. 2014, 161, F1448-F1457.
  151. Su, Y.; Zhang, Y.; Zhuang, X.; Li, S.; Wu, D.; Zhang, F.; Feng, X. Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 2013, 62, 296-301.
  152. Yang, X.; Liu, Y.; Li, S.; Wei, X.; Wang, L.; Chen, Y. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts. Sci. Rep. 2012, 2, 567.
  153. Wu, J.; Wang, Y.; Zhang, D.; Hou, B. Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. Journal of Power Sources 2011, 196, 1141-1144.
  154. Fatah, M.C.; Ismail, M.C. Empirical equation of CO2 corrosion with presence of low concentrations of acetic acid under turbulent flow conditions. Corros. Eng., Sci. Technol. 2011, 46, 49-55.
  155. Wang, G.; Wu, H.; Wexler, D.; Liu, H.; Savadogo, O. Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds 2010, 503, L1-L4.
  156. Wang, Y.; Zhang, D.; Liu, H. A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. Journal of Power Sources 2010, 195, 3135-3139.
  157. Wu, H.; Wexler, D.; Wang, G. PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity. Journal of Alloys and Compounds 2009, 488, 195-198.
  158. Thielemans, W.; Warbey, C.R.; Walsh, D.A. Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem. 2009, 11, 531-537.
  159. El-Deab, M.S.; Ohsaka, T. Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. Journal of Electroanalytical Chemistry 2003, 553, 107-115.
  160. Zhao, Z.; Kostopoulos, N.; Ganguli, S.; Bergstrom, P.; Sekretareva, A. Single-Entity Protein Electrochemistry of Diffusion-Limited Enzymes. .
  161. Benzigar, M.R.; Joseph, S.; Baskar, A.V.; Park, D.; Chandra, G.; Umapathy, S.; Talapaneni, S.N.; Vinu, A. Ordered Mesoporous C70 with Highly Crystalline Pore Walls for Energy Applications. Adv. Funct. Mater. , 28, 1803701.
  162. Chen, Y.; Li, L.; Liu, X.; Wan, W.; Luo, J. Synthesis of a synergistic catalyst for oxygen reduction and a Zn–air battery by the in situ coupling of hemin-derived Fe3O4/N-doped graphitic carbon. Mater. Res. Express .
  163. Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. , 119, 4138-4141.
  164. Gao, R.; Yin, Y.; Niu, F.; Wang, A.; Li, S.; Dong, H.; Yang, S. One Pot Synthesis of FeCo/N-Doped 3D Porous Carbon Nanosheets as Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. ChemElectroChem .
  165. Lenarda, A.; Bevilacqua, M.; Tavagnacco, C.; Nasi, L.; Criado, A.; Vizza, F.; Melchionna, M.; Prato, M.; Fornasiero, P. Selective H2O2 electrocatalytic generation by Cobalt@N-doped graphitic carbon core-shell nanohybrids. ChemSusChem .
  166. Ning, X.; Li, Y.; Ming, J.; Wang, Q.; Wang, H.; Cao, Y.; Peng, F.; Yang, Y.; Yu, H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem. Sci. , 10, 1589-1596.
  167. Qi, J.; Zhang, W.; Xu, L. Solvent-Free Mechanochemical Preparation of Hierarchically Porous Carbon for Supercapacitor and Oxygen Reduction Reaction. , 24, 18097-18105.
  168. Schmidt, T.J.; Paulus, U.A.; Gasteiger, H.A.; Behm, R.J. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. , 508, 41–47.
  169. Schmies, H. In situ studies of Pt nanoparticles on different supports for corrosion stable PEM fuel cell cathodes. Ph.D. Dissertation, Technical University of Berlin, .
  170. Wei, Z.D.; Chan, S.H.; Li, L.L.; Cai, H.F.; Xia, Z.T.; Sun, C.X. Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction. Electrochim. Acta , 50, 2279–2287.
  171. Yang, Z.; Zhao, C.; Qu, Y.; Zhou, H.; Zhou, F.; Wang, J.; Wu, Y.; Li, Y. Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Adv. Mater. , 1808043.
  172. Zheng, L.; Zheng, S.; Zhu, Z.; Xu, Q.; Zhang, G.; Sun, S.; Yang, D. Photochemical Synthesis of Radiate Titanium Oxide Microrods Arrays Supporting Platinum Nanoparticles for Photoassisted Electrooxidation of Methanol. , 5, 1800748.
  173. B. Venarusso, L.; V. Boone, C.; Bettini, J.; Maia, G. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. , 6, 1714-1726.
  174. Vishnosky, N. Synthesis, characterization, and evaluation of metal complexes with cancer selective anti-proliferative effects and hydrogen evolution catalytic properties. Ph.D. Dissertation, University of Louisville, .
  175. Bereketova, A.; Nallal, M.; Yusuf, M.; Jang, S.; Selvam, K.; Hyun Park, K. A Co-MOF-derived flower-like CoS@S,N-doped carbon matrix for highly efficient overall water splitting. RSC Adv. , 11, 16823-16833.
  176. Schild, J. Catalyseurs supportés sur nanotubes de carbone pour la production d’énergies bas carbone. Ph.D. Dissertation, University of Paris - Saclay, .
  177. Katona, R.M.; Carpenter, J.C.; Knight, A.W.; Marshall, R.S.; Nation, B.L.; Schindelholz, E.J.; Schaller, R.F.; Kelly, R.G. Natural Convection Boundary Layer Thickness at Elevated Chloride Concentrations and Temperatures and the Effects on a Galvanic Couple. J. Electrochem. Soc. , 168, 031512.
  178. Rossi, M.; Wen, K.; Caruso, F.; Belli, S. Emodin Scavenging of Superoxide Radical Includes π–π Interaction. X-Ray Crystal Structure, Hydrodynamic Voltammetry and Theoretical Studies. , 9, 194.
  179. Moreno-García, P.; Grozovski, V.; Vázquez, M.d.J.G.; Mysuru, N.; Kiran, K.; Kovács, N.; Hou, Y.; Vesztergom, S.; Broekmann, P. Inverted RDE (iRDE) as Novel Test Bed for Studies on Additive-Assisted Metal Deposition under Gas-Evolution Conditions. J. Electrochem. Soc. , 167, 042503.
  180. Wippermann, K.; Suo, Y.; Korte, C. Suitability of the Hanging Meniscus RDE for the Electrochemical Investigation of Ionic Liquids. J. Electrochem. Soc. , 167, 046511.
  181. Vos, J.G.; Venugopal, A.; Smith, W.A.; Koper, M.T.M. Competition and Interhalogen Formation During Parallel Electrocatalytic Oxidation of Bromide and Chloride on Pt. J. Electrochem. Soc. , 167, 046505.
  182. Anderson, G.C.; Pivovar, B.S.; Alia, S.M. Establishing Performance Baselines for the Oxygen Evolution Reaction in Alkaline Electrolytes. J. Electrochem. Soc. , 167, 044503.
  183. Li, J.; Chen, M.; Cullen, D.A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G.E.; Feng, Z.; Su, D.; More, K.L.; Wang, G.; Wang, Z.; Wu, G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. , 1, 935.
  184. Jung, S.; Kortlever, R.; Jones, R.J.R.; Lichterman, M.F.; Agapie, T.; McCrory, C.C.L.; Peters, J.C. Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell. Anal. Chem. , 89, 581–585.
  185. Singh, R.K.; Devivaraprasad, R.; Kar, T.; Chakraborty, A.; Neergat, M. Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support. J. Electrochem. Soc. , 162, F489—-F498.
  186. Uwadiunor, E.; Johnson, D.; Hansen, K.; Djire, A. Controlling the Surface Reactivity of Hybrid Ti3CN MXene via In-situ Electrocatalysis. ChemCatChem , 14, e202200702.
  187. Shi, S.; Yang, J.; Chen, L.; Huang, M.; Liu, C.; Ding, R.; Yin, X. Identifying Electrocatalytic Activity Sequence of Metal Phthalocyanines for the Hydrogen Peroxide Oxidation Reaction. J. Electrochem. Soc. .
  188. Ye, L.; Liao, M.; Zhang, K.; Zheng, M.; Jiang, Y.; Cheng, X.; Wang, C.; Xu, Q.; Tang, C.; Li, P.; Wen, Y.; Xu, Y.; Sun, X.; Chen, P.; Sun, H.; Gao, Y.; Zhang, Y.; Wang, B.; Lu, J.; Zhou, H.; Wang, Y.; Xia, Y.; Xu, X.; Peng, H. A rechargeable calcium–oxygen battery that operates at room temperature. Nature , 626, 313-318.
  189. Xi, D.; Alfaraidi, A.M.; Gao, J.; Cochard, T.; Faria, L.C.I.; Yang, Z.; George, T.Y.; Wang, T.; Gordon, R.G.; Liu, R.Y.; Aziz, M.J. Mild pH-decoupling aqueous flow battery with practical pH recovery. Nat Energy , 9, 479-490.
  190. Escamilla, M.; Zuleta Suarez, E.C.; Davis, H.K.; Johnson, J.; Imel, A.; Barth, B.A.; Zawodzinski, T.; Pentzer, E. Synthesis of Alkoxy-TEMPO Aminoxyl Radicals and Electrochemical Characterization in Acetonitrile for Energy Storage Applications. J. Electrochem. Soc. , 171, 040533.
  191. Hegemann, M.; Bawol, P.P.; Köllisch-Mirbach, A.; Baltruschat, H. Mixed Lithium and Sodium Ion Aprotic DMSO Electrolytes for Oxygen Reduction on Au and Pt Studied by DEMS and RRDE. Electrocatalysis , 12, 564-578.
  192. Torres, P.A.L.; El-Sayed, H.A.; Schwämmlein, J.N.; Friedrich, F.; Gasteiger, H. Hydrogen Gas Promoted Self-Limiting Copper Monolayer Deposition on Platinum. J. Electrochem. Soc. , 168, 052508.
  193. Shen, X.; Sinclair, N.S.; Wainright, J.S.; Savinell, R.F. Methods—Analyzing Electrochemical Kinetic Parameters in Deep Eutectic Solvents Using an Extended Butler-Volmer Equation. J. Electrochem. Soc. , 168, 056520.
  194. Yang, L.; Wang, T.; Wu, D. Porous Nitrogen-doped Reduced Graphene Oxide Gels as Efficient Supercapacitor Electrodes and Oxygen Reduction Reaction Electrocatalysts. Chin. J. Chem. , 38, 1123-1131.
  195. Leteba, G.; George, S.L.; Mitchell, D.R.G.; Levecque, P.B.; van Steen, E.; Macheli, L.; Lang, C.I. Synthesis of PtNi Nanoparticles to Accelerate the Oxygen Reduction Reaction. ChemPlusChem , e202400083, Early View.
  196. Okonkwo, P.C.; Oluwasegun, K.M.; Daniyan, A.A.; Ige, O.O. The Role of Shear Stress and pH on Mild Steel Corrosion Rate in a Simulated Mine Water. , 43, 205-217.
  197. Golubović, J.; Varničić, M.; Štrbac, S. Study of Oxygen Reduction Reaction on Polycrystalline Rhodium in Acidic and Alkaline Media. Catalysts , 14, 327.
  198. Finn, M.; Weathers, B.; Hudak, B.M.; Baturina, O.A. Effect of pH on the Selectivity of γ-MnO2 Electrocatalysts towards Oxygen Evolution Reaction in the Presence of Chloride Ions in Alkaline Environment. ChemElectroChem , 11, e202400220.
  199. Ahmed, S.I.U.; Sankarasubramanian, S. Low pH Titanium Electrochemistry in the Presence of Sulfuric Acid and its Implications for Redox Flow Battery Applications. J. Electrochem. Soc. , 171, 060538.
  200. Dean, W.S.; Soucy, T.L.; Rivera-Cruz, K.E.; Filien, L.L.; Terry, B.D.; McCrory, C.C.L. Mitigating Cobalt Phthalocyanine Aggregation in Electrocatalyst Films through Codeposition with an Axially Coordinating Polymer. Small , 21, 2402293.
  201. Rampf, A.; Braig, M.; Passerini, S.; Zeis, R. A Comparative Study of the Oxygen Reduction Reaction on Pt and Ag in Alkaline Media. ChemElectroChem , 12, e202400563.
  202. Fan, M.; Tian, H.; Wu, Z.; Dai, J.; Ma, X.; You, Y.; Huang, J.; Feng, Y.; Ding, W.; Jiang, H.; Xu, W.; Jin, H.; Wan, J. Microwave Shock Synthesis of Porous 2D Non-Layered Transition Metal Carbides for Efficient Hydrogen Evolution. , 5, e252.
Document #
Title
Type
Download
DRA10052
Probing Fuel Cell Electrocatalyst Properties Using Pine Rotating Disk and Ring-Disk Electrodes
Login
Register
Lost Password

Please enter your username (email address) and password below.

Confirm Logout

Are you sure you want to log out?

Request a Quote for this Cart

Below is the billing data we have on file. These details will be used on your quotation, so please update them here if you require any changes. Changing any details here updates them for your account.